ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploration of Trivial and Non-trivial electronic phases, and Collinear and Non-collinear Magnetic phases in low-spin d$^5$ perovskites

96   0   0.0 ( 0 )
 نشر من قبل Birabar Ranjit Nanda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $4d$ and $5d$ transition metal oxides have become important members of the emerging quantum materials family due to competition between onsite Coulomb repulsion ($U$) and spin-orbit coupling (SOC). Specifically, the systems with $d^5$ electronic configuration in an octahedral environment are found to be capable of posessing invariant semimetallic state and perturbations can lead to diverse magnetic phases. In this work, by formulating a multi-band Hubbard model and performing SOC tunable DFT+$U$ calculations on a prototype SrIrO$_3$ and extending the analysis to other iso-structural and isovalent compounds, we present eight possible electronic and magnetic configurations in the $U$-SOC phase diagram that can be observed in the family of low-spin $d^5$ perovskites. They include the protected Dirac semimetal state, metal and insulator regimes, collinear and noncollinear spin ordering. The latter is explained through connecting hopping interactions to the rotation and tilting of the octahedra as observed in GdFeO$_3$. Presence of several soft phase boundaries makes the family of $d^5$ perovskites an ideal platform to study electronic and magnetic phase transitions under external stimuli.

قيم البحث

اقرأ أيضاً

Topological materials have drawn increasing attention owing to their rich quantum properties. A notable highlight is the observation of a large intrinsic anomalous Hall effect (AHE) in Weyl and nodal-line semimetals. However, how the electronic topol ogy of the carriers contributes to the transport and whether it can be externally tuned remains elusive. In this study, we demonstrate a magnetic-field-induced switching of band topology in $alpha$-EuP$_3$, a magnetic semimetal with a layered crystal structure derived from black phosphorus. Such topology switching is shown to be accompanied by a crossover from paramagnetic to ferromagnetic, manifesting as a giant AHE in the magnetoresistance when the magnetic field is perpendicular to the crystalline mirror plane. Electronic structure calculations further indicate that, depending on the direction of the magnetic field, two distinct topological phases, Weyl semimetal and topological nodal-line semimetal, are stabilized via the exchange coupling between Eu-4$f$ moments and conducting carriers. Our findings provide a realistic solution for external control and manipulation of band topology, enriching the functional aspects of topological materials and furthering the possibility of practical applications for topological electronics.
Sr$_{3}$ZnIrO$_{6}$ is an effective spin one-half Mott insulating iridate belonging to a family of magnets which includes a number of quasi-one dimensional systems as well as materials exhibiting three dimensional order. Here we present the results o f an extensive investigation into the magnetism including heat capacity, a.c. susceptibility, muon spin rotation ($mu$SR), neutron diffraction and inelastic neutron scattering on the same sample. It is established that the material exhibits a transition at about $17$ K into a three-dimensional antiferromagnetic structure with propagation vector $boldsymbol{k}=(0,frac{1}{2},1)$ in the hexagonal setting of R$bar{3}$c and non-collinear moments of $0.87$$mu_B$ on Ir$^{4+}$ ions. Further we have observed a well defined powder averaged spin wave spectrum with zone boundary energy of $sim 5$ meV at $5$ K. We stress that a theoretical analysis shows that the observed non-collinear magnetic structure arises from anisotropic inter- and intra- chain exchange which has its origin in significant spin-orbit coupling. The model can satisfactorily explain the observed spin wave excitations.
Realization of semimetals with non-trivial topologies such as Dirac and Weyl semimetals, have provided a boost in the study of these quantum materials. Presence of electron correlation makes the system even more exotic due to enhanced scattering of c harge carriers, Kondo screening etc. Here, we studied the electronic properties of single crystalline, SmBi employing varied state of the art bulk measurements. Magnetization data reveals two magnetic transitions; an antiferromagnetic order with a Neel temperature of ~ 9 K and a second magnetic transition at a lower temperature (= 7 K). The electrical resistivity data shows an upturn typical of a Kondo system and the estimated Kondo temperature is found to be close to the Neel temperature. High quality of the crystal enabled us to discover signature of quantum oscillation in the magnetization data even at low magnetic field. Using a Landau level fan diagram analysis, a non-trivial Berry phase is identified for a Fermi pocket revealing the topological character in this material. These results demonstrate an unique example of the Fermiology in the antiferromagnetic state and opens up a new paradigm to explore the Dirac fermion physics in correlated topological metal via interplay of Kondo interaction, topological order and magnetism.
Complex oxides with $4d$ and $5d$ transition-metal ions recently emerged as a new paradigm in correlated electron physics, due to the interplay between spin-orbit coupling and electron interactions. For $4d$ and $5d$ ions, the spin-orbit coupling, $z eta$, can be as large as 0.2-0.4 eV, which is comparable with and often exceeds other relevant parameters such as Hunds coupling $J_{rm H}$, noncubic crystal field splitting $Delta$, and the electron hopping amplitude $t$. This gives rise to a variety of spin-orbit-entangled degrees of freedom and, crucially, non-trivial interactions between them that depend on the $d$-electron configuration, the chemical bonding, and the lattice geometry. Exotic electronic phases often emerge, including spin-orbit assisted Mott insulators, quantum spin liquids, excitonic magnetism, multipolar orderings and correlated topological semimetals. This paper provides a selective overview of some of the most interesting spin-orbit-entangled phases that arise in $4d$ and $5d$ transition-metal compounds.
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symme try. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to non-trivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses Matrix Product States (MPS) and the infinite Time-Evolving Block Decimation (iTEBD) method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by Conformal Field Theories (CFT) with central charge c=1. Our results are in agreement, and further generalize, those in [Y. Fuji, F. Pollmann, M. Oshikawa, Phys. Rev. Lett. 114, 177204 (2015)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا