ﻻ يوجد ملخص باللغة العربية
Complex oxides with $4d$ and $5d$ transition-metal ions recently emerged as a new paradigm in correlated electron physics, due to the interplay between spin-orbit coupling and electron interactions. For $4d$ and $5d$ ions, the spin-orbit coupling, $zeta$, can be as large as 0.2-0.4 eV, which is comparable with and often exceeds other relevant parameters such as Hunds coupling $J_{rm H}$, noncubic crystal field splitting $Delta$, and the electron hopping amplitude $t$. This gives rise to a variety of spin-orbit-entangled degrees of freedom and, crucially, non-trivial interactions between them that depend on the $d$-electron configuration, the chemical bonding, and the lattice geometry. Exotic electronic phases often emerge, including spin-orbit assisted Mott insulators, quantum spin liquids, excitonic magnetism, multipolar orderings and correlated topological semimetals. This paper provides a selective overview of some of the most interesting spin-orbit-entangled phases that arise in $4d$ and $5d$ transition-metal compounds.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relev
The $4d$ and $5d$ transition metal oxides have become important members of the emerging quantum materials family due to competition between onsite Coulomb repulsion ($U$) and spin-orbit coupling (SOC). Specifically, the systems with $d^5$ electronic
Spin-orbit coupling of as large as a half eV for electrons in 5$d$ orbitals often gives rise to the formation of spin-orbital entangled objects, characterized by the effective total angular momentum $J_{eff}$. Of particular interest are the $J_{eff}$
We report structural studies of the spin-orbit Mott insulator family K$_x$Ir$_y$O$_2$, with triangular layers of edge-sharing IrO$_6$ octahedra bonded by potassium ions. The potassium content acts as a chemical tuning parameter to control the amount
We study the exchange interactions and resulting magnetic phases in the honeycomb cobaltates. For a broad range of trigonal crystal fields acting on Co2+ ions, the low-energy pseudospin-1/2 Hamiltonian is dominated by bond-dependent Ising couplings t