ﻻ يوجد ملخص باللغة العربية
Photons emitted by light sources in the neighbourhood of a black hole can wind several times around it before fleeing towards the observer. For spherically symmetric black holes, two infinite sequences of images are created for any given source, asymptotically approaching the shadow border with decreasing magnitude. These sequences are reflected by a characteristic staircase structure in the complex visibility function that may be used to decode the properties of the black hole metric. Recalling the formalism of gravitational lensing in the strong deflection limit, we derive analytical formulae for the height, the width and the periodicities of the steps in the visibility as functions of the black hole parameters for the case of a single compact source. With respect to diffuse emission by the whole accretion flow, this ideal framework provides clean insight and model-independent information on the metric. These basic formulae can then be used to build visibilities for more complicated sources and track the changes induced by alternative metrics and ultimately test General Relativity. As simple examples, we include visibilities for Reissner-Nordstrom and Janis-Newman-Winicour metrics.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii)
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated wit
According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses and spins and are described by the Kerr metric. Several parametric spacetimes which deviate from the Kerr metric have been proposed in order to tes
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sp
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper,