ﻻ يوجد ملخص باللغة العربية
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated within the context of self-force physics, extends the procedure to metric perturbations sourced by a particle in a bound geodesic orbit. However, the existing procedure leaves undetermined a certain stationary, axially-symmetric piece of the metric perturbation. In the vacuum region away from the particle, this completion piece corresponds simply to mass and angular-momentum perturbations of the Kerr background, with amplitudes that are, however, a priori unknown. Here we present and implement a rigorous method for finding the completion piece. The key idea is to impose continuity, off the particle, of certain gauge-invariant fields constructed from the full (completed) perturbation, in order to determine the unknown amplitude parameters of the completion piece. We implement this method in full for bound (eccentric) geodesic orbits in the equatorial plane of the Kerr black hole. Our results provide a rigorous underpinning of recent results by Friedman {it et al.} for circular orbits, and extend them to non-circular orbits.
Binary black hole may form near a supermassive black hole. The background black hole (BH) will affect the gravitational wave (GW) generated by the binary black hole. It is well known that the Penrose process may provide extra energy due to the ergosp
Context. The Event Horizon Telescope (EHT) collaboration recently obtained first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. Aims. We want to develop a simple analytic disk model for the accreti
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii)
We formulate a spherical harmonically decomposed 1+1 scheme to self-consistently evolve the trajectory of a point particle and its gravitational metric perturbation to a Schwarzschild background spacetime. Following the work of Moncrief, we write dow
Photons emitted by light sources in the neighbourhood of a black hole can wind several times around it before fleeing towards the observer. For spherically symmetric black holes, two infinite sequences of images are created for any given source, asym