ﻻ يوجد ملخص باللغة العربية
Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they con
Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2 x N states satisfy additional property: the positivity of their partial transposition is recognized with respect to t
The purpose of an entanglement witness experiment is to certify the creation of an entangled state from a finite number of trials. The statistical confidence of such an experiment is typically expressed as the number of observed standard deviations o
Engineered quantum systems enabling novel capabilities for communication, computation, and sensing have blossomed in the last decade. Architectures benefiting from combining distinct and complementary physical quantum systems have emerged as promisin
Experimental detection of entanglement of an arbitrary state of a given bipartite system is crucial for exploring many areas of quantum information. But such a detection should be made in a device independent way if the preparation process of the sta