ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid-Entanglement in Continuous Variable Systems

432   0   0.0 ( 0 )
 نشر من قبل Christian Gabriel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber.

قيم البحث

اقرأ أيضاً

107 - H.-C. Lin , A. J. Fisher 2007
We study the `local entanglement remaining after filtering operations corresponding to imperfect measurements performed by one or both parties, such that the parties can only determine whether or not the system is located in some region of space. The local entanglement in pure states of general bipartite multidimensional continuous-variable systems can be completely determined through simple expressions. We apply our approach to semiclassical WKB systems, multi-dimensional harmonic oscillators, and a hydrogen atom as three examples.
The generation and manipulation of hybrid entanglement of light involving discrete- and continuous-variable states have recently appeared as essential resources towards the realization of heterogeneous quantum networks. Here we investigate a scheme f or the remote generation of hybrid entanglement between particle-like and wave-like optical qubits based on a non-local heralding photon detection. We also extend this scheme with additional local or non-local detections. An additional local heralding allows the resulting state to exhibit a higher fidelity with the targeted entangled qubits while a two-photon non-local heralding detection gives access to a higher dimensionality in the discrete-variable subspace, resulting thereby in the generation of hybrid entangled qutrits. The implementation of the presented schemes, in combination with ongoing works on high-fidelity quantum state engineering, will provide novel non-classical light sources for the development of optical hybrid architectures.
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic field s or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
Transferring quantum information between distant nodes of a network is a key capability. This transfer can be realized via remote state preparation where two parties share entanglement and the sender has full knowledge of the state to be communicated . Here we demonstrate such a process between heterogeneous nodes functioning with different information encodings, i.e., particle-like discrete-variable optical qubits and wave-like continuous-variable ones. Using hybrid entanglement of light as a shared resource, we prepare arbitrary coherent-state superpositions controlled by measurements on the distant discrete-encoded node. The remotely prepared states are fully characterized by quantum state tomography and negative Wigner functions are obtained. This work demonstrates a novel capability to bridge discrete- and continuous-variable platforms.
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gaug ed using measures of the degree of inseparability and the degree of EPR paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا