ﻻ يوجد ملخص باللغة العربية
Experimental detection of entanglement of an arbitrary state of a given bipartite system is crucial for exploring many areas of quantum information. But such a detection should be made in a device independent way if the preparation process of the state is considered to be faithful, in order to avoid detection of a separable state as entangled one. The recently developed scheme of detecting bipartite entanglement in a measurement device independent way [Phys. Rev. Lett {bf 110}, 060405 (2013)] does require information about the state. Here by using Auguisiak et al.s universal entanglement witness scheme for two-qubit states [Phys. Rev. A {bf 77}, 030301 (2008)], we provide a universal detection scheme for two-qubit states in a measurement device independent way. We provide a set of universal witness operators for detecting NPT-ness(negative under partial transpose) of states in a measurement device independent way. We conjecture that no such universal entanglement witness exists for PPT(positive under partial transpose) entangled states. We also analyse the robustness of some of the experimental schemes of detecting entanglement in a measurement device independent way under the influence of noise in the inputs (from the referee) as well as in the measurement operator as envisazed in ref. [Phys. Rev. Lett {bf 110}, 060405 (2013)].
The certification of entanglement dimensionality is of great importance in characterizing quantum systems. Recently, it is pointed out that quantum correlation of high-dimensional states can be simulated with a sequence of lower-dimensional states. S
The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled
Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far,
In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electrom
Incompatible measurements, i.e., measurements that cannot be simultaneously performed, are necessary to observe nonlocal correlations. It is natural to ask, e.g., how incompatible the measurements have to be to achieve a certain violation of a Bell i