ﻻ يوجد ملخص باللغة العربية
Topological magnons are bosonic analogues of topological fermions in electronic systems. They have been studied extensively by theory but rarely realized by experiment. Here, by performing inelastic neutron scattering measurements on single crystals of a two-dimensional ferromagnet CrBr$_3$, which was classified as Dirac magnon semimetal featured by the linear bands crossing at the Dirac points, we fully map out the magnetic excitation spectra, and reveal that there is an apparent gap of $sim$3.5~meV between the acoustic and optical branches of the magnons at the K point. By collaborative efforts between experiment and theoretical calculations using a five-orbital Hubbard model obtained from first-principles calculations to derive the exchange parameters, we find that a Hamiltonian with Heisenberg exchange interactions, next-nearest-neighbor Dzyaloshinskii-Moriya (DM) interaction, and single-ion anisotropy is more appropriate to describe the system. Calculations using the model show that the lower and upper magnon bands separated by the gap exhibit Chern numbers of $pm1$. These results indicate that CrBr$_3$ is a topological magnon insulator, where the nontrivial gap is a result of the DM interaction.
We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon-polarons, are analytically shown to be topologically nontrivial, possessing finite Ch
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon exci
The bosonic analogues of topological insulators have been proposed in numerous theoretical works, but their experimental realization is still very rare, especially for spin systems. Recently, two-dimensional (2D) honeycomb van der Waals (vdW) ferroma
We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering te
The search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipation-less spintronics. In the 2D vdW ferromagnetic (FM) hone