ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon-polaron excitations in the noncollinear antiferromagnet Mn$_3$Ge

106   0   0.0 ( 0 )
 نشر من قبل Aleksandr Sukhanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering temperature of 370~K. The magnetic excitations have a 5-meV gap and display an anisotropic dispersive mode reaching $simeq 90$~meV at the boundaries of the magnetic Brillouin zone. The spectrum at the zone center shows two additional excitations that demonstrate characteristics of both magnons and phonons. The textit{ab initio} lattice-dynamics calculations show that these can be associated with the magnon-polaron modes resulting from the hybridization of the spin fluctuations and the low-energy optical phonons. The observed magnetoelastic coupling agrees with the previously found negative thermal expansion in this compound and resembles the features reported in the spectroscopic studies of other antiferromagnets with the similar noncollinear spin structures.



قيم البحث

اقرأ أيضاً

We have measured antiferromagnetic resonance (AFMR) frequency-field dependences for aluminum-manganese garnet Mn$_{3}$Al$_{2}$Ge$_{3}$O$_{12}$ at frequencies from 1 to 125 GHz and at the fields up to 60 kOe. Three AFMR modes were observed for all ori entations, their zero field gaps are about 40 and 70 GHz. Andreev-Marchenko hydrodynamic theory [Sov. Phys. Usp. 130, 39 (1980)] well describes experimental frequency-field dependences. We have observed hysteresis of resonance absorption as well as history dependence of resonance absorption near gap frequencies below 10 kOe in all three measured field orientations, which are supposedly due to the sample domain structure. Observation of the AFMR signal at the frequencies from 1 to 5 GHz allows to estimate repulsion of nuclear and electron modes of spin precession in the vicinity of spin-reorientation transition at H||[100].
We report electrical current switching of noncollinear antiferromagnetic (AFM) Mn$_3$GaN/Pt bilayers at room temperature. The Hall resistance of these bilayers can be manipulated by applying a pulse current of $1.5times10^6$~A/cm$^2$, whereas no sign ificant change is observed up to $sim10^8$~A/cm$^2$ in Mn$_3$GaN single films, indicating that the Pt layer plays an important role. In comparison with ferrimagnetic Mn$_3$GaN/Pt bilayers, a lower electrical current switching of noncollinear AFM Mn$_3$GaN is demonstrated, with a critical current density two orders of magnitude smaller. Our results highlight that a combination of a noncollinear AFM antiperovskite nitride and a spin-torque technique is a good platform of AFM spintronics.
By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar non-collinear antiferromagnet Mn$_3$Ge caused by an application of hydrostatic pressure up to 5phantom{ }GPa. At ambient conditions the kagome lay ers of Mn atoms in Mn$_3$Ge order in a triangular 120$^{circ}$ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a non-coplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.
We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn$_3$Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong prefere nce for a spin structure with $E_{1g}$ symmetry relative to the $D_{6h}$ point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state.
The discovery of topological quantum materials represents a striking innovation in modern condensed matter physics with remarkable fundamental and technological implications. Their classification has been recently extended to topological Weyl semimet als, i.e., solid state systems which exhibit the elusive Weyl fermions as low-energy excitations. Here we show that the Nernst effect can be exploited as a sensitive probe for determining key parameters of the Weyl physics, applying it to the non-collinear antiferromagnet Mn$_3$Ge. This compound exhibits anomalous thermoelectric transport due to enhanced Berry curvature from Weyl points located extremely close to the Fermi level. We establish from our data a direct measure of the Berry curvature at the Fermi level and, using a minimal model of a Weyl semimetal, extract for the first time the Weyl point energy and their distance in momentum-space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا