ﻻ يوجد ملخص باللغة العربية
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon excitations, a relatively weak continuum scattering is also observed at higher energies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistent with predictions of spin wave theory.
The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering
We used a combination of polarized Raman spectroscopy and spin wave calculations to study magnetic excitations in the strong spin-orbit-coupled (SOC) bilayer perovskite antiferromagnet $Sr_3Ir_2O_7$. We observed two broad Raman features at ~ 800 $cm^
Topological magnons are bosonic analogues of topological fermions in electronic systems. They have been studied extensively by theory but rarely realized by experiment. Here, by performing inelastic neutron scattering measurements on single crystals
We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility,
We report neutron inelastic scattering measurements on the stoichiometric iron-based superconductor LiFeAs. We find evidence for (i) magnetic scattering consistent with strong antiferromagnetic fluctuations, and (ii) an increase in intensity in the s