ﻻ يوجد ملخص باللغة العربية
The recent research of disorder effects on topological phases in quasicrystalline systems has received much attention. In this work, by numerically computing the (spin) Bott index and the thermal conductance, we reveal the effects of disorder on a class D chiral and a class DIII time-reversal invariant topological superconductors in a two-dimensional Ammann-Beenker tiling quasicrystalline lattice. We demonstrate that both the topologically protected chiral and helical Majorana edge modes are robust against weak disorder in the quasicrystalline lattice. More fascinating is the discovery of disorder-induced topologically nontrivial phases exhibiting chiral and helical Majorana edge modes in class D and DIII topological superconductor systems, respectively. Our findings open the door for the research on disorder-induced Majorana edge modes in quasicrystalline systems.
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we
We study the transport of chiral Majorana edge modes (CMEMs) in a hybrid quantum anomalous Hall insulator-topological superconductor (QAHI-TSC) system in which the TSC region contains a Josephson junction and a cavity. The Josephson junction undergoe
We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter butterfly-like structure when it is represented as a function of the
Chiral and helical Majorana edge modes are two archetypal gapless excitations of two-dimensional topological superconductors. They belong to superconductors from two different Altland-Zirnbauer symmetry classes characterized by $mathbb{Z}$ and $mathb
Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct