ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-induced chiral and helical Majorana edge modes in a two-dimensional Ammann-Beenker quasicrystal

197   0   0.0 ( 0 )
 نشر من قبل Bin Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent research of disorder effects on topological phases in quasicrystalline systems has received much attention. In this work, by numerically computing the (spin) Bott index and the thermal conductance, we reveal the effects of disorder on a class D chiral and a class DIII time-reversal invariant topological superconductors in a two-dimensional Ammann-Beenker tiling quasicrystalline lattice. We demonstrate that both the topologically protected chiral and helical Majorana edge modes are robust against weak disorder in the quasicrystalline lattice. More fascinating is the discovery of disorder-induced topologically nontrivial phases exhibiting chiral and helical Majorana edge modes in class D and DIII topological superconductor systems, respectively. Our findings open the door for the research on disorder-induced Majorana edge modes in quasicrystalline systems.



قيم البحث

اقرأ أيضاً

Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we show that such a protection against disorder does not exist in realistic multi-channel TI/SC/ferromagnetic insulator (FI) sandwich structures of experimental relevance since the time-reversal symmetry is explicitly broken locally at the SC/FI interface where the end Majorana mode (MM) resides. We find that although the MM itself and the emph{bulk} topological superconducting phase inside the TI are indeed universally protected against disorder, disorder-induced subgap states are generically introduced at the TI edge due to the presence of the FI/SC interface as long as multiple edge channels are occupied. We discuss the implications of the finding for the detection and manipulation of the edge MM in realistic TI/SC/FI experimental systems of current interest.
63 - Yan-Feng Zhou , Zhe Hou , Peng Lv 2018
We study the transport of chiral Majorana edge modes (CMEMs) in a hybrid quantum anomalous Hall insulator-topological superconductor (QAHI-TSC) system in which the TSC region contains a Josephson junction and a cavity. The Josephson junction undergoe s a topological transition when the magnetic flux through the cavity passes through half-integer multiples of magnetic flux quantum. For the trivial phase, the CMEMs transmit along the QAHI-TSC interface as without magnetic flux. However, for the nontrivial phase, a zero-energy Majorana state appears in the cavity, leading that a CMEM can resonantly tunnel through the Majorana state to a different CMEM. These findings may provide a feasible scheme to control the transport of CMEMs by using the magnetic flux and the transport pattern can be customized by setting the size of the TSC.
We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter butterfly-like structure when it is represented as a function of the magnetic flux per tile. We show that the low-DOS regions of the energy spectrum are associated with chiral edge states, in direct analogy with the Chern insulators realized with periodic lattices. We establish the topological nature of the edge states by computing the topological Chern number associated with the bulk of the quasicrystal. This topological characterization of the non-periodic lattice is achieved through a local (real-space) topological marker. This work opens a route for the exploration of topological insulating materials in a wide range of non-periodic lattice systems, including photonic crystals and cold atoms in optical lattices.
Chiral and helical Majorana edge modes are two archetypal gapless excitations of two-dimensional topological superconductors. They belong to superconductors from two different Altland-Zirnbauer symmetry classes characterized by $mathbb{Z}$ and $mathb b{Z}_2$ topological invariant respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate without symmetry breaking. Here we show that such a direct topological transition is in fact possible, provided the system possesses an additional symmetry $mathcal{O}$ which changes the bulk topological invariant to $mathbb{Z}oplus mathbb{Z}$ type. A simple model describing the proximity structure of a Chern insulator and a $p_x$-wave superconductor is proposed and solved analytically to illustrate the transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by $mathcal{O}$-graded Chern number and hosts a pair of counter-propagating Majorana fermions. The bulk topological invariants and edge theory are worked out in detail. Implications of these results to topological quantum computing based on Majorana fermions are discussed.
Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct observation of the collective neutral and charge modes of the two chiral co-propagating edge channels of opposite spins of the quantum Hall effect at filling factor 2. Generating a charge density wave at frequency f in the outer channel, we measure the current induced by inter-channel Coulomb interaction in the inner channel after a 3-mm propagation length. Varying the driving frequency from 0.7 to 11 GHz, we observe damped oscillations in the induced current that result from the phase shift between the fast charge and slow neutral eigenmodes. We measure the dispersion relation and dissipation of the neutral mode from which we deduce quantitative information on the interaction range and parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا