ﻻ يوجد ملخص باللغة العربية
We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter butterfly-like structure when it is represented as a function of the magnetic flux per tile. We show that the low-DOS regions of the energy spectrum are associated with chiral edge states, in direct analogy with the Chern insulators realized with periodic lattices. We establish the topological nature of the edge states by computing the topological Chern number associated with the bulk of the quasicrystal. This topological characterization of the non-periodic lattice is achieved through a local (real-space) topological marker. This work opens a route for the exploration of topological insulating materials in a wide range of non-periodic lattice systems, including photonic crystals and cold atoms in optical lattices.
Non-Hermitian systems can host topological states with novel topological invariants and bulk-edge correspondences that are distinct from conventional Hermitian systems. Here we show that two unique classes of non-Hermitian 2D topological phases, a 2$
Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposit
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu
We theoretically study the Hofstadter butterfly of a triangular network model in minimally twisted bilayer graphene (mTBLG). The band structure manifests periodicity in energy, mimicking that of Floquet systems. The butterfly diagrams provide fingerp
Two-dimensional topological insulators are characterized by gapped bulk states and gapless helical edge states, i.e. time-reversal symmetric edge states accommodating a pair of counter-propagating electrons. An external magnetic field breaks the time