ترغب بنشر مسار تعليمي؟ اضغط هنا

Ethical AI-Powered Regression Test Selection

300   0   0.0 ( 0 )
 نشر من قبل Per Erik Strandberg
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Test automation is common in software development; often one tests repeatedly to identify regressions. If the amount of test cases is large, one may select a subset and only use the most important test cases. The regression test selection (RTS) could be automated and enhanced with Artificial Intelligence (AI-RTS). This however could introduce ethical challenges. While such challenges in AI are in general well studied, there is a gap with respect to ethical AI-RTS. By exploring the literature and learning from our experiences of developing an industry AI-RTS tool, we contribute to the literature by identifying three challenges (assigning responsibility, bias in decision-making and lack of participation) and three approaches (explicability, supervision and diversity). Additionally, we provide a checklist for ethical AI-RTS to help guide the decision-making of the stakeholders involved in the process.



قيم البحث

اقرأ أيضاً

Regression test case prioritization (RTCP) aims to improve the rate of fault detection by executing more important test cases as early as possible. Various RTCP techniques have been proposed based on different coverage criteria. Among them, a majorit y of techniques leverage code coverage information to guide the prioritization process, with code units being considered individually, and in isolation. In this paper, we propose a new coverage criterion, code combinations coverage, that combines the concepts of code coverage and combination coverage. We apply this coverage criterion to RTCP, as a new prioritization technique, code combinations coverage based prioritization (CCCP). We report on empirical studies conducted to compare the testing effectiveness and efficiency of CCCP with four popular RTCP techniques: total, additional, adaptive random, and search-based test prioritization. The experimental results show that even when the lowest combination strength is assigned, overall, the CCCP fault detection rates are greater than those of the other four prioritization techniques. The CCCP prioritization costs are also found to be comparable to the additional test prioritization technique. Moreover, our results also show that when the combination strength is increased, CCCP provides higher fault detection rates than the state-of-the-art, regardless of the levels of code coverage.
Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal. This setting imposes potentially hazardous circumstances due to contacts that could harm human beings. Thus, building such systems with strong as surances of compliance with requirements domain specific standards and regulations is of greatest importance. Challenges associated with the achievement of this goal become even more severe when such systems rely on machine learning components rather than such as top-down rule-based AI. In this paper, we introduce a risk modeling approach tailored to Collaborative AI systems. The risk model includes goals, risk events and domain specific indicators that potentially expose humans to hazards. The risk model is then leveraged to drive assurance methods that feed in turn the risk model through insights extracted from run-time evidence. Our envisioned approach is described by means of a running example in the domain of Industry 4.0, where a robotic arm endowed with a visual perception component, implemented with machine learning, collaborates with a human operator for a production-relevant task.
Artificial intelligence (AI) technology has been increasingly used in the implementation of advanced Clinical Decision Support Systems (CDSS). Research demonstrated the potential usefulness of AI-powered CDSS (AI-CDSS) in clinical decision making sce narios. However, post-adoption user perception and experience remain understudied, especially in developing countries. Through observations and interviews with 22 clinicians from 6 rural clinics in China, this paper reports the various tensions between the design of an AI-CDSS system (Brilliant Doctor) and the rural clinical context, such as the misalignment with local context and workflow, the technical limitations and usability barriers, as well as issues related to transparency and trustworthiness of AI-CDSS. Despite these tensions, all participants expressed positive attitudes toward the future of AI-CDSS, especially acting as a doctors AI assistant to realize a Human-AI Collaboration future in clinical settings. Finally we draw on our findings to discuss implications for designing AI-CDSS interventions for rural clinical contexts in developing countries.
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, ther e is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
222 - Varun Nayak , Daniel Kraus 2020
Test generation at the graphical user interface (GUI) level has proven to be an effective method to reveal faults. When doing so, a test generator has to repeatably decide what action to execute given the current state of the system under test (SUT). This problem of action selection usually involves random choice, which is often referred to as monkey testing. Some approaches leverage other techniques to improve the overall effectiveness, but only a few try to create human-like actions---or even entire action sequences. We have built a novel session-based recommender system that can guide test generation. This allows us to mimic past user behavior, reaching states that require complex interactions. We present preliminary results from an empirical study, where we use GitHub as the SUT. These results show that recommender systems appear to be well-suited for action selection, and that the approach can significantly contribute to the improvement of GUI-based test generation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا