ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Risk Modeling for Collaborative AI

162   0   0.0 ( 0 )
 نشر من قبل Matteo Camilli Ph.D.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal. This setting imposes potentially hazardous circumstances due to contacts that could harm human beings. Thus, building such systems with strong assurances of compliance with requirements domain specific standards and regulations is of greatest importance. Challenges associated with the achievement of this goal become even more severe when such systems rely on machine learning components rather than such as top-down rule-based AI. In this paper, we introduce a risk modeling approach tailored to Collaborative AI systems. The risk model includes goals, risk events and domain specific indicators that potentially expose humans to hazards. The risk model is then leveraged to drive assurance methods that feed in turn the risk model through insights extracted from run-time evidence. Our envisioned approach is described by means of a running example in the domain of Industry 4.0, where a robotic arm endowed with a visual perception component, implemented with machine learning, collaborates with a human operator for a production-relevant task.



قيم البحث

اقرأ أيضاً

AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, ther e is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
Test automation is common in software development; often one tests repeatedly to identify regressions. If the amount of test cases is large, one may select a subset and only use the most important test cases. The regression test selection (RTS) could be automated and enhanced with Artificial Intelligence (AI-RTS). This however could introduce ethical challenges. While such challenges in AI are in general well studied, there is a gap with respect to ethical AI-RTS. By exploring the literature and learning from our experiences of developing an industry AI-RTS tool, we contribute to the literature by identifying three challenges (assigning responsibility, bias in decision-making and lack of participation) and three approaches (explicability, supervision and diversity). Additionally, we provide a checklist for ethical AI-RTS to help guide the decision-making of the stakeholders involved in the process.
Channel pruning and tensor decomposition have received extensive attention in convolutional neural network compression. However, these two techniques are traditionally deployed in an isolated manner, leading to significant accuracy drop when pursuing high compression rates. In this paper, we propose a Collaborative Compression (CC) scheme, which joints channel pruning and tensor decomposition to compress CNN models by simultaneously learning the model sparsity and low-rankness. Specifically, we first investigate the compression sensitivity of each layer in the network, and then propose a Global Compression Rate Optimization that transforms the decision problem of compression rate into an optimization problem. After that, we propose multi-step heuristic compression to remove redundant compression units step-by-step, which fully considers the effect of the remaining compression space (i.e., unremoved compression units). Our method demonstrates superior performance gains over previous ones on various datasets and backbone architectures. For example, we achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
In many industry scale applications, large and resource consuming machine learning models reside in powerful cloud servers. At the same time, large amounts of input data are collected at the edge of cloud. The inference results are also communicated to users or passed to downstream tasks at the edge. The edge often consists of a large number of low-power devices. It is a big challenge to design industry products to support sophisticated deep model deployment and conduct model inference in an efficient manner so that the model accuracy remains high and the end-to-end latency is kept low. This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud. This patented technology is already validated on selected applications, is on its way for broader systematic edge-cloud application integration, and is being made available for public use as an automated pipeline service for end-to-end cloud-edge collaborative intelligence deployment. To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
Thinking of technology as a design material is appealing. It encourages designers to explore the materials properties to understand its capabilities and limitations, a prerequisite to generative design thinking. However, as a material, AI resists thi s approach because its properties emerge as part of the design process itself. Therefore, designers and AI engineers must collaborate in new ways to create both the material and its application experience. We investigate the co-creation process through a design study with 10 pairs of designers and engineers. We find that design probes with user data are a useful tool in defining AI materials. Through data probes, designers construct designerly representations of the envisioned AI experience (AIX) to identify desirable AI characteristics. Data probes facilitate divergent thinking, material testing, and design validation. Based on our findings, we propose a process model for co-creating AIX and offer design considerations for incorporating data probes in design tools.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا