ﻻ يوجد ملخص باللغة العربية
Non-line-of-sight (NLOS) imaging enables monitoring around corners and is promising for diverse applications. The resolution of transient NLOS imaging is limited to a centimeter scale, mainly by the temporal resolution of the detectors. Here, we construct an up-conversion single-photon detector with a high temporal resolution of ~1.4 ps and a low noise count rate of 5 counts per second (cps). Notably, the detector operates at room temperature, near-infrared wavelength. Using this detector, we demonstrate high-resolution and low-noise NLOS imaging. Our system can provide a 180 {mu}m axial resolution and a 2 mm lateral resolution, which is more than one order of magnitude better than that in previous experiments. These results open avenues for high-resolution NLOS imaging techniques in relevant applications.
Emerging single-photon-sensitive sensors combined with advanced inverse methods to process picosecond-accurate time-stamped photon counts have given rise to unprecedented imaging capabilities. Rather than imaging photons that travel along direct path
We consider the non-line-of-sight (NLOS) imaging of an object using the light reflected off a diffusive wall. The wall scatters incident light such that a lens is no longer useful to form an image. Instead, we exploit the 4D spatial coherence functio
Imaging objects obscured by occluders is a significant challenge for many applications. A camera that could see around corners could help improve navigation and mapping capabilities of autonomous vehicles or make search and rescue missions more effec
Conventional imaging only records photons directly sent from the object to the detector, while non-line-of-sight (NLOS) imaging takes the indirect light into account. Most NLOS solutions employ a transient scanning process, followed by a physical bas
Non-Line-of-Sight (NLOS) imaging allows to observe objects partially or fully occluded from direct view, by analyzing indirect diffuse reflections off a secondary, relay surface. Despite its many potential applications, existing methods lack practica