ﻻ يوجد ملخص باللغة العربية
Emerging single-photon-sensitive sensors combined with advanced inverse methods to process picosecond-accurate time-stamped photon counts have given rise to unprecedented imaging capabilities. Rather than imaging photons that travel along direct paths from a source to an object and back to the detector, non-line-of-sight (NLOS) imaging approaches analyse photons {scattered from multiple surfaces that travel} along indirect light paths to estimate 3D images of scenes outside the direct line of sight of a camera, hidden by a wall or other obstacles. Here we review recent advances in the field of NLOS imaging, discussing how to see around corners and future prospects for the field.
Non-line-of-sight (NLOS) imaging enables monitoring around corners and is promising for diverse applications. The resolution of transient NLOS imaging is limited to a centimeter scale, mainly by the temporal resolution of the detectors. Here, we cons
Conventional imaging only records photons directly sent from the object to the detector, while non-line-of-sight (NLOS) imaging takes the indirect light into account. Most NLOS solutions employ a transient scanning process, followed by a physical bas
We consider the non-line-of-sight (NLOS) imaging of an object using the light reflected off a diffusive wall. The wall scatters incident light such that a lens is no longer useful to form an image. Instead, we exploit the 4D spatial coherence functio
Non-Line-of-Sight (NLOS) imaging allows to observe objects partially or fully occluded from direct view, by analyzing indirect diffuse reflections off a secondary, relay surface. Despite its many potential applications, existing methods lack practica
We present a neural modeling framework for Non-Line-of-Sight (NLOS) imaging. Previous solutions have sought to explicitly recover the 3D geometry (e.g., as point clouds) or voxel density (e.g., within a pre-defined volume) of the hidden scene. In con