ﻻ يوجد ملخص باللغة العربية
Conventional imaging only records photons directly sent from the object to the detector, while non-line-of-sight (NLOS) imaging takes the indirect light into account. Most NLOS solutions employ a transient scanning process, followed by a physical based algorithm to reconstruct the NLOS scenes. However, the transient detection requires sophisticated apparatus, with long scanning time and low robustness to ambient environment, and the reconstruction algorithms are typically time-consuming and computationally expensive. Here we propose a new NLOS solution to address the above defects, with innovations on both equipment and algorithm. We apply inexpensive commercial Lidar for detection, with much higher scanning speed and better compatibility to real-world imaging. Our reconstruction framework is deep learning based, with a generative two-step remapping strategy to guarantee high reconstruction fidelity. The overall detection and reconstruction process allows for millisecond responses, with reconstruction precision of millimeter level. We have experimentally tested the proposed solution on both synthetic and real objects, and further demonstrated our method to be applicable to full-color NLOS imaging.
Emerging single-photon-sensitive sensors combined with advanced inverse methods to process picosecond-accurate time-stamped photon counts have given rise to unprecedented imaging capabilities. Rather than imaging photons that travel along direct path
We consider the non-line-of-sight (NLOS) imaging of an object using the light reflected off a diffusive wall. The wall scatters incident light such that a lens is no longer useful to form an image. Instead, we exploit the 4D spatial coherence functio
Imaging objects obscured by occluders is a significant challenge for many applications. A camera that could see around corners could help improve navigation and mapping capabilities of autonomous vehicles or make search and rescue missions more effec
Non-Line-of-Sight (NLOS) imaging allows to observe objects partially or fully occluded from direct view, by analyzing indirect diffuse reflections off a secondary, relay surface. Despite its many potential applications, existing methods lack practica
Non-line-of-sight (NLOS) imaging techniques use light that diffusely reflects off of visible surfaces (e.g., walls) to see around corners. One approach involves using pulsed lasers and ultrafast sensors to measure the travel time of multiply scattere