ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong coupling in thermoelectric nanojunctions: a reaction coordinate framework

71   0   0.0 ( 0 )
 نشر من قبل Ahsan Nazir
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a model of a thermoelectric nanojunction driven by vibrationally-assisted tunneling. We apply the reaction coordinate formalism to derive a master equation governing its thermoelectric performance beyond the weak electron-vibrational coupling limit. Employing full counting statistics we calculate the current flow, thermopower, associated noise, and efficiency without resorting to the weak vibrational coupling approximation. We demonstrate intricacies of the power-efficiency-precision trade-off at strong coupling, showing that the three cannot be maximised simultaneously in our model. Finally, we emphasise the importance of capturing non-additivity when considering strong coupling and multiple environments, demonstrating that an additive treatment of the environments can violate the upper bound on thermoelectric efficiency imposed by Carnot.

قيم البحث

اقرأ أيضاً

We study electron pumping in the strong coupling and non-Markovian regime. Our model is a single quantum dot with periodically modulated energy and tunnelling amplitudes. We identify four parameters to control the direction of the current: the drivin g phase, the coupling strength, the driving frequency and the location of the maxima of the spectral density. In the high-frequency regime, we use a Markovian embedding strategy to map our model to three serial quantum dots weakly coupled to the reservoirs allowing us to use a Floquet master equation. We observe a rectification effect of the pumped charge that is exclusive to the non-Markovian character of our model. In the low-frequency regime, we apply an additional transformation to see our model as three independent transport channels. With the use of full counting statistics, we study charge fluctuations and validate that our model behaves as a single electron source.
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED). The achievement of strong coupling, where the coupling between a single atom and fundamental cavity mode exceeds the decay rates, was a major milestone that opened the doors to a multitude of new investigations. Here we introduce multimode strong coupling (MMSC), where the coupling is comparable to the free spectral range (FSR) of the cavity, i.e. the rate at which a qubit can absorb a photon from the cavity is comparable to the round trip transit rate of a photon in the cavity. We realize, via the circuit QED architecture, the first experiment accessing the MMSC regime, and report remarkably widespread and structured resonance fluorescence, whose origin extends beyond cavity enhancement of sidebands. Our results capture complex multimode, multiphoton processes, and the emergence of ultranarrow linewidths. Beyond the novel phenomena presented here, MMSC opens a major new direction in the exploration of light-matter interactions.
82 - Harald R. Haakh , Sanli Faez , 2015
Propagation of light through dielectrics lies at the heart of optics. However, this ubiquitous process is commonly described using phenomenological dielectric function $varepsilon$ and magnetic permeability $mu$, i.e. without addressing the quantum g raininess of the dielectric matter. Here, we present a theoretical study where we consider a one-dimensional ensemble of atoms in a subwavelength waveguide (nanoguide) as fundamental building blocks of a model dielectric. By exploring the roles of the atom-waveguide coupling efficiency, density, disorder, and dephasing, we establish connections among various features of polaritonic light-matter states such as localization, super and subradiance, and strong coupling. In particular, we show that coherent multiple scattering of light among atoms that are coupled via a single propagating mode can gives rise to Rabi splitting. These results provide important insight into the underlying physics of strong coupling reported by recent room-temperature experiments with microcavities and surface plasmons.
Strong light-matter coupling is a necessary condition for exchanging information in quantum information protocols. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different type of excitations, e.g. transd ucing between light and phonons or magnons. An unexplored, so far, interface is the coupling between light and topologically protected particle like excitations as magnetic domain walls, skyrmions or vortices. Here, we show theoretically that a single photon living in a superconducting cavity can be coupled strongly to the gyrotropic mode of a magnetic vortex in a nanodisc. We combine numerical and analytical calculations for a superconducting coplanar waveguide resonator and different realizations of the nanodisc (materials and sizes). We show that, for enhancing the coupling, constrictions fabricated in the resonator are beneficial, allowing to reach the strong coupling in CoFe discs of radius $200-400$ nm having resonance frequencies of few GHz. The strong coupling regime permits to exchange coherently a single photon and quanta of vortex excitations. Thus, our calculations show that the device proposed here serves as a transducer between photons and gyrating vortices, opening the way to complement superconducting qubits with topologically protected spin-excitations like vortices or skyrmions. We finish by discussing potential applications in quantum data processing based on the exploitation of the vortex as a short-wavelength magnon emitter.
Strong and ultra-strong light-matter coupling are remarkable phenomena of quantum electrodynamics occurring when the interaction between a matter excitation and the electromagnetic field cannot be described by usual perturbation theory. This is gener ally achieved by coupling an excitation with large oscillator strength to the confined electromagnetic mode of an optical microcavity. In this work we demonstrate that strong/ultra-strong coupling can also take place in the absence of optical confinement. We have studied the non-perturbative spontaneous emission of collective excitations in a dense two-dimensional electron gas that superradiantly decays into free space. By using a quantum model based on the input-output formalism, we have derived the linear optical properties of the coupled system and demonstrated that its eigenstates are mixed light-matter particles, like in any system displaying strong or ultra-strong light-matter interaction. Moreover, we have shown that in the ultra-strong coupling regime, i.e. when the radiative broadening is comparable to the matter excitation energy, the commonly used rotating-wave and Markov approximations yield unphysical results. Finally, the input-output formalism has allowed us to prove that Kirchhoffs law, describing thermal emission properties, applies to our system in all the light-matter coupling regimes considered in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا