ﻻ يوجد ملخص باللغة العربية
Propagation of light through dielectrics lies at the heart of optics. However, this ubiquitous process is commonly described using phenomenological dielectric function $varepsilon$ and magnetic permeability $mu$, i.e. without addressing the quantum graininess of the dielectric matter. Here, we present a theoretical study where we consider a one-dimensional ensemble of atoms in a subwavelength waveguide (nanoguide) as fundamental building blocks of a model dielectric. By exploring the roles of the atom-waveguide coupling efficiency, density, disorder, and dephasing, we establish connections among various features of polaritonic light-matter states such as localization, super and subradiance, and strong coupling. In particular, we show that coherent multiple scattering of light among atoms that are coupled via a single propagating mode can gives rise to Rabi splitting. These results provide important insight into the underlying physics of strong coupling reported by recent room-temperature experiments with microcavities and surface plasmons.
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED). The achievement of strong coupling, where the coupling between a
Strong and ultra-strong light-matter coupling are remarkable phenomena of quantum electrodynamics occurring when the interaction between a matter excitation and the electromagnetic field cannot be described by usual perturbation theory. This is gener
We study a model of a thermoelectric nanojunction driven by vibrationally-assisted tunneling. We apply the reaction coordinate formalism to derive a master equation governing its thermoelectric performance beyond the weak electron-vibrational couplin
Strong light-matter coupling is a necessary condition for exchanging information in quantum information protocols. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different type of excitations, e.g. transd
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi