ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong coupling of a single photon to a magnetic vortex

336   0   0.0 ( 0 )
 نشر من قبل David Zueco
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong light-matter coupling is a necessary condition for exchanging information in quantum information protocols. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different type of excitations, e.g. transducing between light and phonons or magnons. An unexplored, so far, interface is the coupling between light and topologically protected particle like excitations as magnetic domain walls, skyrmions or vortices. Here, we show theoretically that a single photon living in a superconducting cavity can be coupled strongly to the gyrotropic mode of a magnetic vortex in a nanodisc. We combine numerical and analytical calculations for a superconducting coplanar waveguide resonator and different realizations of the nanodisc (materials and sizes). We show that, for enhancing the coupling, constrictions fabricated in the resonator are beneficial, allowing to reach the strong coupling in CoFe discs of radius $200-400$ nm having resonance frequencies of few GHz. The strong coupling regime permits to exchange coherently a single photon and quanta of vortex excitations. Thus, our calculations show that the device proposed here serves as a transducer between photons and gyrating vortices, opening the way to complement superconducting qubits with topologically protected spin-excitations like vortices or skyrmions. We finish by discussing potential applications in quantum data processing based on the exploitation of the vortex as a short-wavelength magnon emitter.

قيم البحث

اقرأ أيضاً

Josephson junctions (JJs) are ubiquitous superconducting devices, enabling high sensitivity magnetometers and voltage amplifiers, as well as forming the basis of high performance cryogenic computer and superconducting quantum computers. While JJ perf ormance can be degraded by quasiparticles (QPs) formed from broken Cooper pairs, this phenomenon also opens opportunities to sensitively detect electromagnetic radiation. Here we demonstrate single near-infrared photon detection by coupling photons to the localized surface plasmons of a graphene-based JJ. Using the photon-induced switching statistics of the current-biased JJ, we reveal the critical role of QPs generated by the absorbed photon in the detection mechanism. The photon-sensitive JJ will enable a high-speed, low-power optical interconnect for future JJ-based computing architectures.
88 - M. Bina , G. Romero , J. Casanova 2011
We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution for this open system dynamics in the off-resonance case of the qubit-mo de interaction. Collapses and revivals of parity chain populations and the oscillatory behavior of the mean photon number are predicted. At the same time, photon number wave packets, propagating back and forth along parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning on the validity of the analytical solution.
Electron-spin nitrogen-vacancy color centers in diamond are a natural candidate to act as a quantum memory for superconducting qubits because of their large collective coupling and long coherence times. We report here the first demonstration of stron g coupling and coherent exchange of a single quantum of energy between a flux-qubit and an ensemble of nitrogen-vacancy color centers.
Multi-photon emitters are a sought-after resource in quantum photonics. Nonlinear interactions between a multi-level atomic system and a coherent drive can lead to resonant two-photon emission, but harvesting light from this process has remained a ch allenge due to the small oscillator strengths involved. Here we present a study of two-photon resonance fluorescence at microwave frequencies, using a superconducting, ladder-type artificial atom, a transmon, strongly coupled to a waveguide. We drive the two-photon transition between the ground and second-excited state at increasingly high powers and observe a resonance fluorescence peak whose intensity becomes comparable to single-photon emission until it splits into a Mollow-like triplet. We measure photon correlations of frequency-filtered spectral lines and find that while emission at the fundamental frequency stays antibunched, the resonance fluorescence peak at the two-photon transition is superbunched. Our results provide a route towards the realization of multi-photon sources in the microwave domain.
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluc tuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring and validate the foundations of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new route for implementing what Schrodinger termed quantum steering-harnessing action at a distance to manipulate quantum states via measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا