ﻻ يوجد ملخص باللغة العربية
In clinical and epidemiological studies, hazard ratios are often applied to compare treatment effects between two groups for survival data. For competing risks data, the corresponding quantities of interest are cause-specific hazard ratios (CHRs) and subdistribution hazard ratios (SHRs). However, they all have some limitations related to model assumptions and clinical interpretation. Therefore, we introduce restricted mean time lost (RMTL) as an alternative that is easy to interpret in a competing risks framework. We propose a hypothetical test and sample size estimator based on the difference in RMTL (RMTLd). The simulation results show that the RMTLd test has robust statistical performance (both type I error and power). Meanwhile, the RMTLd-based sample size can approximately achieve the predefined power level. The results of two example analyses also verify the performance of the RMTLd test. From the perspectives of clinical interpretation, application conditions and statistical performance, we recommend that the RMTLd be reported with the HR when analyzing competing risks data and that the RMTLd even be regarded as the primary outcome when the proportional hazard assumption fails.
Competing risks data are common in medical studies, and the sub-distribution hazard (SDH) ratio is considered an appropriate measure. However, because the limitations of hazard itself are not easy to interpret clinically and because the SDH ratio is
When considering a genetic disease with variable age at onset (ex: diabetes , familial amyloid neuropathy, cancers, etc.), computing the individual risk of the disease based on family history (FH) is of critical interest both for clinicians and patie
In the process of clinical diagnosis and treatment, the restricted mean survival time (RMST), which reflects the life expectancy of patients up to a specified time, can be used as an appropriate outcome measure. However, the RMST only calculates the
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar
Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy have focused on a single chemical exposure observed at high temporal resolution. Recent resea