ﻻ يوجد ملخص باللغة العربية
In the process of clinical diagnosis and treatment, the restricted mean survival time (RMST), which reflects the life expectancy of patients up to a specified time, can be used as an appropriate outcome measure. However, the RMST only calculates the mean survival time of patients within a period of time after the start of follow-up and may not accurately portray the change in a patients life expectancy over time. The life expectancy can be adjusted for the time the patient has already survived and defined as the conditional restricted mean survival time (cRMST). A dynamic RMST model based on the cRMST can be established by incorporating time-dependent covariates and covariates with time-varying effects. We analysed data from a study of primary biliary cirrhosis (PBC) to illustrate the use of the dynamic RMST model. The predictive performance was evaluated using the C-index and the prediction error. The proposed dynamic RMST model, which can explore the dynamic effects of prognostic factors on survival time, has better predictive performance than the RMST model. Three PBC patient examples were used to illustrate how the predicted cRMST changed at different prediction times during follow-up. The use of the dynamic RMST model based on the cRMST allows for optimization of evidence-based decision-making by updating personalized dynamic life expectancy for patients.
Competing risks data are common in medical studies, and the sub-distribution hazard (SDH) ratio is considered an appropriate measure. However, because the limitations of hazard itself are not easy to interpret clinically and because the SDH ratio is
Antibodies, an essential part of our immune system, develop through an intricate process to bind a wide array of pathogens. This process involves randomly mutating DNA sequences encoding these antibodies to find variants with improved binding, though
We discuss causal mediation analyses for survival data and propose a new approach based on the additive hazards model. The emphasis is on a dynamic point of view, that is, understanding how the direct and indirect effects develop over time. Hence, im
With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predicto
We study the variable selection problem in survival analysis to identify the most important factors affecting the survival time when the variables have prior knowledge that they have a mutual correlation through a graph structure. We consider the Cox