ﻻ يوجد ملخص باللغة العربية
Competing risks data are common in medical studies, and the sub-distribution hazard (SDH) ratio is considered an appropriate measure. However, because the limitations of hazard itself are not easy to interpret clinically and because the SDH ratio is valid only under the proportional SDH assumption, this article introduced an alternative index under competing risks, named restricted mean time lost (RMTL). Several test procedures were also constructed based on RMTL. First, we introduced the definition and estimation of RMTL based on Aalen-Johansen cumulative incidence functions. Then, we considered several combined tests based on the SDH and the RMTL difference (RMTLd). The statistical properties of the methods are evaluated using simulations and are applied to two examples. The type I errors of combined tests are close to the nominal level. All combined tests show acceptable power in all situations. In conclusion, RMTL can meaningfully summarize treatment effects for clinical decision making, and three combined tests have robust power under various conditions, which can be considered for statistical inference in real data analysis.
In clinical and epidemiological studies, hazard ratios are often applied to compare treatment effects between two groups for survival data. For competing risks data, the corresponding quantities of interest are cause-specific hazard ratios (CHRs) and
When considering a genetic disease with variable age at onset (ex: diabetes , familial amyloid neuropathy, cancers, etc.), computing the individual risk of the disease based on family history (FH) is of critical interest both for clinicians and patie
In the process of clinical diagnosis and treatment, the restricted mean survival time (RMST), which reflects the life expectancy of patients up to a specified time, can be used as an appropriate outcome measure. However, the RMST only calculates the
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariate