ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles

140   0   0.0 ( 0 )
 نشر من قبل Heather Kulik
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Computational virtual high-throughput screening (VHTS) with density functional theory (DFT) and machine-learning (ML)-acceleration is essential in rapid materials discovery. By necessity, efficient DFT-based workflows are carried out with a single density functional approximation (DFA). Nevertheless, properties evaluated with different DFAs can be expected to disagree for the cases with challenging electronic structure (e.g., open shell transition metal complexes, TMCs) for which rapid screening is most needed and accurate benchmarks are often unavailable. To quantify the effect of DFA bias, we introduce an approach to rapidly obtain property predictions from 23 representative DFAs spanning multiple families and rungs (e.g., semi-local to double hybrid) and basis sets on over 2,000 TMCs. Although computed properties (e.g., spin-state ordering and frontier orbital gap) naturally differ by DFA, high linear correlations persist across all DFAs. We train independent ML models for each DFA and observe convergent trends in feature importance; these features thus provide DFA-invariant, universal design rules. We devise a strategy to train ML models informed by all 23 DFAs and use them to predict properties (e.g., spin-splitting energy) of over 182k TMCs. By requiring consensus of the ANN-predicted DFA properties, we improve correspondence of these computational lead compounds with literature-mined, experimental compounds over the single-DFA approach typically employed. Both feature analysis and consensus-based ML provide efficient, alternative paths to overcome accuracy limitations of practical DFT.

قيم البحث

اقرأ أيضاً

The large-scale search for high-performing candidate 2D materials is limited to calculating a few simple descriptors, usually with first-principles density functional theory calculations. In this work, we alleviate this issue by extending and general izing crystal graph convolutional neural networks to systems with planar periodicity, and train an ensemble of models to predict thermodynamic, mechanical, and electronic properties. To demonstrate the utility of this approach, we carry out a screening of nearly 45,000 structures for two largely disjoint applications: namely, mechanically robust composites and photovoltaics. An analysis of the uncertainty associated with our methods indicates the ensemble of neural networks is well-calibrated and has errors comparable with those from accurate first-principles density functional theory calculations. The ensemble of models allows us to gauge the confidence of our predictions, and to find the candidates most likely to exhibit effective performance in their applications. Since the datasets used in our screening were combinatorically generated, we are also able to investigate, using an innovative method, structural and compositional design principles that impact the properties of the structures surveyed and which can act as a generative model basis for future material discovery through reverse engineering. Our approach allowed us to recover some well-accepted design principles: for instance, we find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to sma ll subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene--graphene dynamics induced by nuclear quantum effects and allow to rationalize the Arrhenius behavior of hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.
Standard flavors of density-functional theory (DFT) calculations are known to fail in describing anions, due to large self-interaction errors. The problem may be circumvented by using localized basis sets of reduced size, leaving no variational flexi bility for the extra electron to delocalize. Alternatively, a recent approach exploiting DFT evaluations of total energies on electronic densities optimized at the Hartree-Fock (HF) level has been reported, showing that the self-interaction-free HF densities are able to lead to an improved description of the additional electron, returning affinities in close agreement with the experiments. Nonetheless, such an approach can fail when the HF densities are too inaccurate. Here, an alternative approach is presented, in which an embedding environment is used to stabilize the anion in a bound configuration. Similarly to the HF case, when computing total energies at the DFT level on these corrected densities, electron affinities in very good agreement with experiments can be recovered. The effect of the environment can be evaluated and removed by an extrapolation of the results to the limit of vanishing embedding. Moreover, the approach can be easily applied to DFT calculations with delocalized basis sets, e.g. plane-waves, for which alternative approaches are either not viable or more computationally demanding. The proposed extrapolation strategy can be thus applied also to extended systems, as often studied in condensed-matter physics and materials science, and we illustrate how the embedding environment can be exploited to determine the energy of an adsorbing anion - here a chloride ion on a metal surface - whose charge configuration would be incorrectly predicted by standard density functionals.
Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to hig h uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development.
158 - Aditya Nandy , Chenru Duan , 2021
Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4,000 manuscripts, we use natural language processing and automated image analysis to obtain over 2,000 solvent-removal stability measures and 3,000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure-property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا