ﻻ يوجد ملخص باللغة العربية
Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4,000 manuscripts, we use natural language processing and automated image analysis to obtain over 2,000 solvent-removal stability measures and 3,000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure-property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications.
We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We ob
The enormous structural and chemical diversity of metal-organic frameworks (MOFs) forces researchers to actively use simulation techniques on an equal footing with experiments. MOFs are widely known for outstanding adsorption properties, so precise d
Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine
We present a three-dimensional Ising model where lines of equal spins are frozen in such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this porous
Diamine-appended metal{organic frameworks (MOFs) of the form Mg2(dobpdc)(diamine)2 adsorb CO2 in a cooperative fashion, exhibiting an abrupt change in CO2 occupancy with pressure or temperature. This change is accompanied by hysteresis. While hystere