ﻻ يوجد ملخص باللغة العربية
When molecular transitions strongly couple to photon modes, they form hybrid light-matter modes called polaritons. Collective vibrational strong coupling is a promising avenue for control of chemistry, but this can be deterred by the large number of quasi-degenerate dark modes. The macroscopic occupation of a single polariton mode by excitations, as observed in Bose-Einstein condensation, offers promise for overcoming this issue. Here we theoretically investigate the effect of vibrational polariton condensation on the kinetics of electron transfer processes. Compared with excitation with infrared laser sources, the condensate changes the reaction yield significantly due to additional channels with reduced activation barriers resulting from the large accumulation of energy in the lower polariton, and the many modes available for energy redistribution during the reaction. Our results offer tantalizing opportunities to use condensates for driving chemical reactions, kinetically bypassing usual constraints of fast intramolecular vibrational redistribution in condensed phase.
Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high temperature processes, particularly for ionic coordinates, implicit
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton inter- action generates complex dynamics in the weak-lasing domai
Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and requ
Single-walled carbon nanotubes are promising nanoelectronic materials but face long-standing challenges including production of pure semiconducting SWNTs and integration into ordered structures. Here, highly pure semiconducting single-walled carbon n
Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanosca