ﻻ يوجد ملخص باللغة العربية
In many fields, data appears in the form of direction (unit vector) and usual statistical procedures are not applicable to such directional data. In this study, we propose non-parametric goodness-of-fit testing procedures for general directional distributions based on kernel Stein discrepancy. Our method is based on Steins operator on spheres, which is derived by using Stokes theorem. Notably, the proposed method is applicable to distributions with an intractable normalization constant, which commonly appear in directional statistics. Experimental results demonstrate that the proposed methods control type-I error well and have larger power than existing tests, including the test based on the maximum mean discrepancy.
We propose and analyse a novel nonparametric goodness of fit testing procedure for exchangeable exponential random graph models (ERGMs) when a single network realisation is observed. The test determines how likely it is that the observation is genera
Statistical modeling plays a fundamental role in understanding the underlying mechanism of massive data (statistical inference) and predicting the future (statistical prediction). Although all models are wrong, researchers try their best to make some
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpreta
We introduce a kernel-based goodness-of-fit test for censored data, where observations may be missing in random time intervals: a common occurrence in clinical trials and industrial life-testing. The test statistic is straightforward to compute, as i
Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices t