ﻻ يوجد ملخص باللغة العربية
We propose and analyse a novel nonparametric goodness of fit testing procedure for exchangeable exponential random graph models (ERGMs) when a single network realisation is observed. The test determines how likely it is that the observation is generated from a target unnormalised ERGM density. Our test statistics are derived from a kernel Stein discrepancy, a divergence constructed via Steins method using functions in a reproducing kernel Hilbert space, combined with a discrete Stein operator for ERGMs. The test is a Monte Carlo test based on simulated networks from the target ERGM. We show theoretical properties for the testing procedure for a class of ERGMs. Simulation studies and real network applications are presented.
In many fields, data appears in the form of direction (unit vector) and usual statistical procedures are not applicable to such directional data. In this study, we propose non-parametric goodness-of-fit testing procedures for general directional dist
Statistical modeling plays a fundamental role in understanding the underlying mechanism of massive data (statistical inference) and predicting the future (statistical prediction). Although all models are wrong, researchers try their best to make some
Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices t
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpreta
We introduce a kernel-based goodness-of-fit test for censored data, where observations may be missing in random time intervals: a common occurrence in clinical trials and industrial life-testing. The test statistic is straightforward to compute, as i