ﻻ يوجد ملخص باللغة العربية
There have been many recent advances on provably efficient Reinforcement Learning (RL) in problems with rich observation spaces. However, all these works share a strong realizability assumption about the optimal value function of the true MDP. Such realizability assumptions are often too strong to hold in practice. In this work, we consider the more realistic setting of agnostic RL with rich observation spaces and a fixed class of policies $Pi$ that may not contain any near-optimal policy. We provide an algorithm for this setting whose error is bounded in terms of the rank $d$ of the underlying MDP. Specifically, our algorithm enjoys a sample complexity bound of $widetilde{O}left((H^{4d} K^{3d} log |Pi|)/epsilon^2right)$ where $H$ is the length of episodes, $K$ is the number of actions and $epsilon>0$ is the desired sub-optimality. We also provide a nearly matching lower bound for this agnostic setting that shows that the exponential dependence on rank is unavoidable, without further assumptions.
In order to deal with the curse of dimensionality in reinforcement learning (RL), it is common practice to make parametric assumptions where values or policies are functions of some low dimensional feature space. This work focuses on the representati
Modern tasks in reinforcement learning have large state and action spaces. To deal with them efficiently, one often uses predefined feature mapping to represent states and actions in a low-dimensional space. In this paper, we study reinforcement lear
Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental pr
The past decade has seen the rapid development of Reinforcement Learning, which acquires impressive performance with numerous training resources. However, one of the greatest challenges in RL is generalization efficiency (i.e., generalization perform
Providing Reinforcement Learning agents with expert advice can dramatically improve various aspects of learning. Prior work has developed teaching protocols that enable agents to learn efficiently in complex environments; many of these methods tailor