ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Impact of the Capacity Drop Phenomenon for Freeway Traffic Flow Control

108   0   0.0 ( 0 )
 نشر من قبل Michael Enqi Cao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Capacity drop is an empirically observed phenomenon in vehicular traffic flow on freeways whereby, after a critical density is reached, a state of congestion sets in, but the freeway does not become decongested again until the density drops well below the critical density. This introduces a hysteresis effect so that it is easier to enter the congested state than to leave it. However, many existing first-order models of traffic flow, particularly those used for control design, ignore capacity drop, leading to suboptimal controllers. In this paper, we consider a cell transmission model of traffic flow that incorporates capacity drop to study the problem of optimal freeway ramp metering. We show that, if capacity drop is ignored in the control design, then the resulting controller, obtained via a convex program, may be significantly suboptimal. We then propose an alternative model predictive controller that accounts for capacity drop via a mixed integer linear program and show that, for sufficiently large rollout horizon, this controller is optimal. We also compare these approaches to a heuristic hand-crafted controller that is viewed as a modification of an integral feedback controller to account for capacity drop. This heuristic controller outperforms the controller that ignores capacity drop but underperforms compared to the proposed alternative model predictive controller. These results suggest that it is generally important to include capacity drop in the controller design process, and we demonstrate this insight on several case studies.



قيم البحث

اقرأ أيضاً

Effective traffic optimization strategies can improve the performance of transportation networks significantly. Most exiting works develop traffic optimization strategies depending on the local traffic states of congested road segments, where the con gestion propagation is neglected. This paper proposes a novel distributed traffic optimization method for urban freeways considering the potential congested road segments, which are called potential-homogeneous-area. The proposed approach is based on the intuition that the evolution of congestion may affect the neighbor segments due to the mobility of traffic flow. We identify potential-homogeneous-area by applying our proposed temporal-spatial lambda-connectedness method using historical traffic data. Further, global dynamic capacity constraint of this area is integrated with cell transmission model (CTM) in the traffic optimization problem. To reduce computational complexity and improve scalability, we propose a fully distributed algorithm to solve the problem, which is based on the partial augmented Lagrangian and dual-consensus alternating direction method of multipliers (ADMM). By this means, distributed coordination of ramp metering and variable speed limit control is achieved. We prove that the proposed algorithm converges to the optimal solution so long as the traffic optimization objective is convex. The performance of the proposed method is evaluated by macroscopic simulation using real data of Shanghai, China.
157 - Jie Zhu , Ivana Tasic , Xiaobo Qu 2021
Freeway on-ramps are typical bottlenecks in the freeway network due to the frequent disturbances caused by their associated merging, weaving, and lane-changing behaviors. With real-time communication and precise motion control, Connected and Autonomo us Vehicles (CAVs) provide an opportunity to substantially enhance the traffic operational performance of on-ramp bottlenecks. In this paper, we propose an upper-level control strategy to coordinate the two traffic streams at on-ramp merging through proactive gap creation and platoon formation. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is formulated as a constrained optimization problem, incorporating both macroscopic and microscopic traffic flow models, for flow-level efficiency gains. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions. The benefits of the proposed coordination are demonstrated through an illustrative case study. Results show that the coordination is compatible with real-world implementation and can substantially improve the overall efficiency of on-ramp merging, especially under high traffic volume conditions, where recurrent traffic congestion is prevented, and merging throughput increased.
91 - Hao Zhou , Anye Zhou , Tienan Li 2021
This paper demonstrates that the acceleration/deceleration limits in ACC systems can make a string stable ACC amplify the speed perturbation in natural driving. It is shown that the constrained acceleration/deceleration of the following ACCs are like ly to cause speed overshoot to compensate for an extra large/small spacing. Additionally, we find that the constrained deceleration limits can also jeopardize safety, as the limited braking power produces extra small spacing or even crashes. The findings are validated through experiments on real cars. The paper suggests that the ACC parameter space should be extended to include the acceleration/deceleration limits considering their significant role exposed here. Through numerical simulations of ACC platoons, we show i) a marginal string stable ACC is preferable due to the smaller total queue length and the shorter duration in congestion; ii) congestion waves in a mixed ACC platoon largely depend on the sequence of vehicles provided different acceleration/deceleration limits, and iii) the safety hazard caused by the constrained deceleration limits is more significant in mixed ACC platoons when string unstable ACCs exist.
Current state-of-art traffic microsimulation tools cannot accurately estimate safety, efficiency, and mobility benefits of automated driving systems and vehicle connectivity because of not considering physical and powertrain characteristics of vehicl es and resistance forces. This paper proposes realistic longitudinal control functions for autonomous vehicles with and without vehicle-to-vehicle communications and a realistic vehicle-following model for human-driven vehicles, considering driver characteristics and vehicle dynamics. Conventional longitudinal control functions apply a constant time gap policy and use empirical constant controller coefficients, potentially sacrificing safety or reducing throughput. Proposed longitudinal control functions calculate minimum safe time gaps at each simulation time step and tune controller coefficients at each simulation time step during acceleration and deceleration to maximize throughput without compromising safety.
Based on game theory and dynamic Level-k model, this paper establishes an intelligent traffic control method for intersections, studies the influence of multi-agent vehicle joint decision-making and group behavior disturbance on system state. The sim ulation results show that this method has a good performance when there are more vehicles or emergency vehicles have higher priority.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا