ﻻ يوجد ملخص باللغة العربية
Celestially, Positronium (Ps), has only been observed through gamma-ray emission produced by its annihilation. However, in its triplet state, a Ps atom has a mean lifetime long enough for electronic transitions to occur between quantum states. This produces a recombination spectrum observable in principle at near IR wavelengths, where angular resolution greatly exceeding that of the gamma-ray observations is possible. However, the background in the NIR is dominated by extremely bright atmospheric hydroxyl (OH) emission lines. In this paper we present the design of a diffraction-limited spectroscopic system using novel photonic components - a photonic lantern, OH Fiber Bragg Grating filters, and a photonic TIGER 2-dimensional pseudo-slit - to observe the Ps Balmer alpha line at 1.3122 microns for the first time.
PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the li
In an attempt to develop a streamlined astrophotonic instrument, we demonstrate the realization of an all-photonic device capable of both multimode to single mode conversion and spectral dispersion on an 8-m class telescope with efficient coupling. T
We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs m
We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode
Astronomical imaging with micro-arcsecond ($mu$as) angular resolution could enable breakthrough scientific discoveries. Previously-proposed $mu$as X-ray imager designs have been interferometers with limited effective collecting area. Here we describe