ﻻ يوجد ملخص باللغة العربية
We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs must be matched to the total number of unpolarized spatial modes on input. This approach has many advantages: (i) after the lantern, the instrument is constructed from commercial off the shelf components; (ii) the instrument is the minimum size and mass configuration at a fixed resolving power and spectral order (~shoebox sized in this case); (iii) the throughput is better than 60% (slit to detector, including detector QE of ~80%); (iv) the scattered light at the detector can be less than 0.1% (total power). Our first implementation operates over 1545-1555 nm (limited by the detector, a 640$times$512 array with 20$mu$m pitch) with a spectral resolution of 0.055nm (R~30,000) using a 1$times$7 (1 multi-mode input to 7 single-mode outputs) photonic lantern. This approach is a first step towards a fully integrated, multimode photonic microspectrograph.
Celestially, Positronium (Ps), has only been observed through gamma-ray emission produced by its annihilation. However, in its triplet state, a Ps atom has a mean lifetime long enough for electronic transitions to occur between quantum states. This p
In an attempt to develop a streamlined astrophotonic instrument, we demonstrate the realization of an all-photonic device capable of both multimode to single mode conversion and spectral dispersion on an 8-m class telescope with efficient coupling. T
We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the non-classical photon statistics of single nitrogen-vacancy colour centres in diamond. By developing a general model of super-resolution based
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns),
The coupling of large telescopes to astronomical instruments has historically been challenging due to the tension between instrument throughput and stability. Light from the telescope can either be injected wholesale into the instrument, maintaining