ﻻ يوجد ملخص باللغة العربية
Federated Learning (FL), arising as a novel secure learning paradigm, has received notable attention from the public. In each round of synchronous FL training, only a fraction of available clients are chosen to participate and the selection decision might have a significant effect on the training efficiency, as well as the final model performance. In this paper, we investigate the client selection problem under a volatile context, in which the local training of heterogeneous clients is likely to fail due to various kinds of reasons and in different levels of frequency. Intuitively, too much training failure might potentially reduce the training efficiency, while too much selection on clients with greater stability might introduce bias, and thereby result in degradation of the training effectiveness. To tackle this tradeoff, we in this paper formulate the client selection problem under joint consideration of effective participation and fairness. Further, we propose E3CS, a stochastic client selection scheme on the basis of an adversarial bandit solution, and we further corroborate its effectiveness by conducting real data-based experiments. According to the experimental results, our proposed selection scheme is able to achieve up to 2x faster convergence to a fixed model accuracy while maintaining the same level of final model accuracy, in comparison to the vanilla selection scheme in FL.
The issue of potential privacy leakage during centralized AIs model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with
Federated learning is a distributed optimization paradigm that enables a large number of resource-limited client nodes to cooperatively train a model without data sharing. Several works have analyzed the convergence of federated learning by accountin
Federated learning (FL) is a distributed machine learning paradigm that allows clients to collaboratively train a model over their own local data. FL promises the privacy of clients and its security can be strengthened by cryptographic methods such a
In this paper, we focus on facilitating differentially private quantized communication between the clients and server in federated learning (FL). Towards this end, we propose to have the clients send a textit{private quantized} version of only the te
Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID, imbalanced (statistical h