ﻻ يوجد ملخص باللغة العربية
Semi-supervised learning (SSL) algorithms have had great success in recent years in limited labeled data regimes. However, the current state-of-the-art SSL algorithms are computationally expensive and entail significant compute time and energy requirements. This can prove to be a huge limitation for many smaller companies and academic groups. Our main insight is that training on a subset of unlabeled data instead of entire unlabeled data enables the current SSL algorithms to converge faster, thereby reducing the computational costs significantly. In this work, we propose RETRIEVE, a coreset selection framework for efficient and robust semi-supervised learning. RETRIEVE selects the coreset by solving a mixed discrete-continuous bi-level optimization problem such that the selected coreset minimizes the labeled set loss. We use a one-step gradient approximation and show that the discrete optimization problem is approximately submodular, thereby enabling simple greedy algorithms to obtain the coreset. We empirically demonstrate on several real-world datasets that existing SSL algorithms like VAT, Mean-Teacher, FixMatch, when used with RETRIEVE, achieve a) faster training times, b) better performance when unlabeled data consists of Out-of-Distribution(OOD) data and imbalance. More specifically, we show that with minimal accuracy degradation, RETRIEVE achieves a speedup of around 3X in the traditional SSL setting and achieves a speedup of 5X compared to state-of-the-art (SOTA) robust SSL algorithms in the case of imbalance and OOD data.
A dataset is a shred of crucial evidence to describe a task. However, each data point in the dataset does not have the same potential, as some of the data points can be more representative or informative than others. This unequal importance among the
In this big data era, we often confront large-scale data in many machine learning tasks. A common approach for dealing with large-scale data is to build a small summary, {em e.g.,} coreset, that can efficiently represent the original input. However,
We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard
In offline reinforcement learning (RL) agents are trained using a logged dataset. It appears to be the most natural route to attack real-life applications because in domains such as healthcare and robotics interactions with the environment are either
Training deep learning models on in-home IoT sensory data is commonly used to recognise human activities. Recently, federated learning systems that use edge devices as clients to support local human activity recognition have emerged as a new paradigm