ﻻ يوجد ملخص باللغة العربية
In this big data era, we often confront large-scale data in many machine learning tasks. A common approach for dealing with large-scale data is to build a small summary, {em e.g.,} coreset, that can efficiently represent the original input. However, real-world datasets usually contain outliers and most existing coreset construction methods are not resilient against outliers (in particular, the outliers can be located arbitrarily in the space by an adversarial attacker). In this paper, we propose a novel robust coreset method for the {em continuous-and-bounded learning} problem (with outliers) which includes a broad range of popular optimization objectives in machine learning, like logistic regression and $ k $-means clustering. Moreover, our robust coreset can be efficiently maintained in fully-dynamic environment. To the best of our knowledge, this is the first robust and fully-dynamic coreset construction method for these optimization problems. We also conduct the experiments to evaluate the effectiveness of our robust coreset in practice.
We study the problem of robust subspace recovery (RSR) in the presence of adversarial outliers. That is, we seek a subspace that contains a large portion of a dataset when some fraction of the data points are arbitrarily corrupted. We first examine a
Semi-supervised learning (SSL) algorithms have had great success in recent years in limited labeled data regimes. However, the current state-of-the-art SSL algorithms are computationally expensive and entail significant compute time and energy requir
We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms. We specifically focus on incorporating r
We develop fast spectral algorithms for tensor decomposition that match the robustness guarantees of the best known polynomial-time algorithms for this problem based on the sum-of-squares (SOS) semidefinite programming hierarchy. Our algorithms can
Many real-world physical control systems are required to satisfy constraints upon deployment. Furthermore, real-world systems are often subject to effects such as non-stationarity, wear-and-tear, uncalibrated sensors and so on. Such effects effective