ترغب بنشر مسار تعليمي؟ اضغط هنا

The normal map for plane curves and pathologies in positive characteristic

111   0   0.0 ( 0 )
 نشر من قبل Alessandro Oneto
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the normal map for plane projective curves, i.e., the map associating to every regular point of the curve the normal line at the point in the dual space. We first observe that the normal map is always birational and then we use this fact to show that for smooth curves of degree higher than four the normal map uniquely determines the curve. Our proof works in characteristic zero and in positive characteristic higher than the degree of the curve. We notice also that in high characteristic strange curves provide examples of different plane curves with same curve of normal lines. We will reinterpret our results also in the modern terminology of bottlenecks of algebraic curves.



قيم البحث

اقرأ أيضاً

Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under the hypothesis that the quotient $pi_1(C)/N$ admits an infinitely generated Sylow $p$-subgroup, we prove that $N$ is indeed isomorphic to a normal (resp. characteristic) subgroup of a free profinite group of countable cardinality. As a consequence, every proper open subgroup of $N$ is a free profinite group of countable cardinality.
Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro ups $N$ of $pi_1(C)$. In Normal subgroups of fundamental groups of affine curves in positive characteristic we proved the same result under the additional hypothesis that $k$ had countable cardinality.
93 - Mao Li , Hao Sun 2021
Let $G$ be a reductive group, and let $X$ be an algebraic curve over an algebraically closed field $k$ with positive characteristic. We prove a version of nonabelian Hodge correspondence for $G$-local systems over $X$ and $G$-Higgs bundles over the F robenius twist $X$ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence.
We generalize a compactification technique due to C. Simpson in the context of $mathbb{G}_m$-actions over the ground field of complex numbers, to the case of a universally Japanese base ring. We complement this generalized compactification technique so that it can sometimes yield projectivity results for these compactifications. We apply these projectivity results to the Hodge, de Rham, and Dolbeault moduli spaces for curves, with special regards to ground fields of positive characteristic.
105 - Adrian Langer 2019
We study restriction of logarithmic Higgs bundles to the boundary divisor and we construct the corresponding nearby-cycles functor in positive characteristic. As applications we prove some strong semipositivity theorems for analogs of complex polariz ed variations of Hodge structures and their generalizations. This implies, e.g., semipositivity for the relative canonical divisor of a semistable reduction in positive characteristic and it gives some new strong results generalizing semipositivity even for complex varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا