ﻻ يوجد ملخص باللغة العربية
We generalize a compactification technique due to C. Simpson in the context of $mathbb{G}_m$-actions over the ground field of complex numbers, to the case of a universally Japanese base ring. We complement this generalized compactification technique so that it can sometimes yield projectivity results for these compactifications. We apply these projectivity results to the Hodge, de Rham, and Dolbeault moduli spaces for curves, with special regards to ground fields of positive characteristic.
We review the results on the cycle classes of the strata defined by the height and the Artin invariant on the moduli of K3 surfaces in positive characteristic obtained in joint work with Katsura and Ekedahl. In addition we prove a new irreducibility result for these strata.
For any two degrees coprime to the rank, we construct a family of ring isomorphisms parameterized by GSp(2g) between the cohomology of the moduli spaces of stable Higgs bundles which preserve the perverse filtrations. As consequences, we prove two st
We prove that Schur polynomials in Chern forms of Nakano and dual Nakano positive vector bundles are positive as differential forms. Moreover, modulo a statement about the positivity of a double mixed discriminant of linear operators on matrices, whi
Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro
We study the normal map for plane projective curves, i.e., the map associating to every regular point of the curve the normal line at the point in the dual space. We first observe that the normal map is always birational and then we use this fact to