ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact subcell WENO limiting strategy using immediate neighbors for Runge-Kutta discontinuous Galerkin methods for unstructured meshes

134   0   0.0 ( 0 )
 نشر من قبل S R Siva Prasad Kochi Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. The main idea of the limiting strategy is to divide the immediate neighbors of a given cell into the required stencil and to use a WENO reconstruction for limiting. This strategy can be applied for any type of WENO reconstruction. We have used the WENO reconstruction proposed by Zhu and Shu in 2019 and provided accuracy tests and results for two-dimensional Burgers equation and two dimensional Euler equations to illustrate the performance of this limiting strategy.

قيم البحث

اقرأ أيضاً

In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of t he method. Instead of the standard hyperbolic level set reinitialization, the flow of time Eikonal equation is discretized to construct an approximate signed distance function. Using the Eikonal equation removes the regularization parameter in the standard approach which allows more predictable behavior and faster convergence speeds around the interface. This makes our approach very efficient especially for banded level set formulations. A set of numerical experiments including both smooth and non-smooth interfaces indicate that the method experimentally achieves design order accuracy.
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients is proposed to detect troubled cells. Then, troubled cells are decomposed into nonuniform subcells and each subcell has one solution point. A second-order finite difference shock-capturing scheme based on nonuniform nonlinear weighted (NNW) interpolation is constructed to calculate troubled cells while smooth cells are calculated by the CPR method. Numerical investigations show that the subcell limiting strategy on unstructured quadrilateral meshes is robust in shock-capturing.
258 - Hailiang Liu , Peimeng Yin 2021
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ y dissipation remains preserved without imposing any restriction on time steps and meshes. We achieve this in two steps. First, taking advantage of the penalty free DG method introduced by Liu and Yin [J Sci. Comput. 77:467--501, 2018] for spatial discretization, we reformulate an extended linearized ODE system by the energy quadratization (EQ) approach. Second, we apply an s-stage algebraically stable RK method for temporal discretization. The resulting fully discrete DG schemes are linear and unconditionally energy stable. In addition, we introduce a prediction-correction procedure to improve both the accuracy and stability of the scheme. We illustrate the effectiveness of the proposed schemes by numerical tests with benchmark problems.
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti city in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the schemes efficiency in resolving complex waves of the two systems. Moreover, the discussion implies that the so-called {delta}-mapping algorithm can also be combined with any other classical methods for solving similar problems in general.
224 - Zachary J. Grant 2020
In this work we consider a mixed precision approach to accelerate the implemetation of multi-stage methods. We show that Runge-Kutta methods can be designed so that certain costly intermediate computations can be performed as a lower-precision comput ation without adversely impacting the accuracy of the overall solution. In particular, a properly designed Runge-Kutta method will damp out the errors committed in the initial stages. This is of particular interest when we consider implicit Runge-Kutta methods. In such cases, the implicit computation of the stage values can be considerably faster if the solution can be of lower precision (or, equivalently, have a lower tolerance). We provide a general theoretical additive framework for designing mixed precision Runge-Kutta methods, and use this framework to derive order conditions for such methods. Next, we show how using this approach allows us to leverage low precision computation of the implicit solver while retaining high precision in the overall method. We present the behavior of some mixed-precision implicit Runge-Kutta methods through numerical studies, and demonstrate how the numerical results match with the theoretical framework. This novel mixed-precision implicit Runge-Kutta framework opens the door to the design of many such methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا