ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the Under-Coverage Bias in Uncertainty Estimation

240   0   0.0 ( 0 )
 نشر من قبل Yu Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimating the data uncertainty in regression tasks is often done by learning a quantile function or a prediction interval of the true label conditioned on the input. It is frequently observed that quantile regression -- a vanilla algorithm for learning quantiles with asymptotic guarantees -- tends to emph{under-cover} than the desired coverage level in reality. While various fixes have been proposed, a more fundamental understanding of why this under-coverage bias happens in the first place remains elusive. In this paper, we present a rigorous theoretical study on the coverage of uncertainty estimation algorithms in learning quantiles. We prove that quantile regression suffers from an inherent under-coverage bias, in a vanilla setting where we learn a realizable linear quantile function and there is more data than parameters. More quantitatively, for $alpha>0.5$ and small $d/n$, the $alpha$-quantile learned by quantile regression roughly achieves coverage $alpha - (alpha-1/2)cdot d/n$ regardless of the noise distribution, where $d$ is the input dimension and $n$ is the number of training data. Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error that is not implied by existing theories on quantile regression. Experiments on simulated and real data verify our theory and further illustrate the effect of various factors such as sample size and model capacity on the under-coverage bias in more practical setups.



قيم البحث

اقرأ أيضاً

The power of machine learning systems not only promises great technical progress, but risks societal harm. As a recent example, researchers have shown that popular word embedding algorithms exhibit stereotypical biases, such as gender bias. The wides pread use of these algorithms in machine learning systems, from automated translation services to curriculum vitae scanners, can amplify stereotypes in important contexts. Although methods have been developed to measure these biases and alter word embeddings to mitigate their biased representations, there is a lack of understanding in how word embedding bias depends on the training data. In this work, we develop a technique for understanding the origins of bias in word embeddings. Given a word embedding trained on a corpus, our method identifies how perturbing the corpus will affect the bias of the resulting embedding. This can be used to trace the origins of word embedding bias back to the original training documents. Using our method, one can investigate trends in the bias of the underlying corpus and identify subsets of documents whose removal would most reduce bias. We demonstrate our techniques on both a New York Times and Wikipedia corpus and find that our influence function-based approximations are very accurate.
We consider the problem of uncertainty estimation in the context of (non-Bayesian) deep neural classification. In this context, all known methods are based on extracting uncertainty signals from a trained network optimized to solve the classification problem at hand. We demonstrate that such techniques tend to introduce biased estimates for instances whose predictions are supposed to be highly confident. We argue that this deficiency is an artifact of the dynamics of training with SGD-like optimizers, and it has some properties similar to overfitting. Based on this observation, we develop an uncertainty estimation algorithm that selectively estimates the uncertainty of highly confident points, using earlier snapshots of the trained model, before their estimates are jittered (and way before they are ready for actual classification). We present extensive experiments indicating that the proposed algorithm provides uncertainty estimates that are consistently better than all known methods.
In model-based testing (MBT) we may have to deal with a non-deterministic model, e.g. because abstraction was applied, or because the software under test itself is non-deterministic. The same test case may then trigger multiple possible execution pat hs, depending on some internal decisions made by the software. Consequently, performing precise test analyses, e.g. to calculate the test coverage, are not possible. This can be mitigated if developers can annotate the model with estimated probabilities for taking each transition. A probabilistic model checking algorithm can subsequently be used to do simple probabilistic coverage analysis. However, in practice developers often want to know what the achieved aggregate coverage, which unfortunately cannot be re-expressed as a standard model checking problem. This paper presents an extension to allow efficient calculation of probabilistic aggregate coverage, and moreover also in combination with k-wise coverage.
54 - Lu Lin , Feng Li 2019
This paper establishes a global bias-correction divide-and-conquer (GBC-DC) rule for biased estimation under the case of memory constraint. In order to introduce the new estimation, a closed representation of the local estimators obtained by the data in each batch is adopted, aiming to formulate a pro forma linear regression between the local estimators and the true parameter of interest. Least square method is then used within this framework to composite a global estimator of the parameter. Thus, the main advantage over the classical DC method is that the new GBC-DC method can absorb the information hidden in the statistical structure and the variables in each batch of data. Consequently, the resulting global estimator is strictly unbiased even if the local estimator has a non-negligible bias. Moreover, the global estimator is consistent, and even can achieve root-$n$ consistency, without the constraint on the number of batches. Another attractive feature of the new method is computationally simple and efficient, without use of any iterative algorithm and local bias-correction. Specifically, the proposed GBC-DC method applies to various biased estimations such as shrinkage-type estimation and nonparametric regression estimation. Detailed simulation studies demonstrate that the proposed GBC-DC approach is significantly bias-corrected, and the behavior is comparable with the full data estimation and is much better than the competitors.
Methods to find counterfactual explanations have predominantly focused on one step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, de pendent actions are taken sequentially over time. We start by formally characterizing a sequence of actions and states using finite horizon Markov decision processes and the Gumbel-Max structural causal model. Building upon this characterization, we formally state the problem of finding counterfactual explanations for sequential decision making processes. In our problem formulation, the counterfactual explanation specifies an alternative sequence of actions differing in at most k actions from the observed sequence that could have led the observed process realization to a better outcome. Then, we introduce a polynomial time algorithm based on dynamic programming to build a counterfactual policy that is guaranteed to always provide the optimal counterfactual explanation on every possible realization of the counterfactual environment dynamics. We validate our algorithm using both synthetic and real data from cognitive behavioral therapy and show that the counterfactual explanations our algorithm finds can provide valuable insights to enhance sequential decision making under uncertainty.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا