ترغب بنشر مسار تعليمي؟ اضغط هنا

Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers

120   0   0.0 ( 0 )
 نشر من قبل Yonatan Geifman
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of uncertainty estimation in the context of (non-Bayesian) deep neural classification. In this context, all known methods are based on extracting uncertainty signals from a trained network optimized to solve the classification problem at hand. We demonstrate that such techniques tend to introduce biased estimates for instances whose predictions are supposed to be highly confident. We argue that this deficiency is an artifact of the dynamics of training with SGD-like optimizers, and it has some properties similar to overfitting. Based on this observation, we develop an uncertainty estimation algorithm that selectively estimates the uncertainty of highly confident points, using earlier snapshots of the trained model, before their estimates are jittered (and way before they are ready for actual classification). We present extensive experiments indicating that the proposed algorithm provides uncertainty estimates that are consistently better than all known methods.



قيم البحث

اقرأ أيضاً

The need to detect bias in machine learning (ML) models has led to the development of multiple bias detection methods, yet utilizing them is challenging since each method: i) explores a different ethical aspect of bias, which may result in contradict ory output among the different methods, ii) provides an output of a different range/scale and therefore, cant be compared with other methods, and iii) requires different input, and therefore a human expert needs to be involved to adjust each method according to the examined model. In this paper, we present BENN -- a novel bias estimation method that uses a pretrained unsupervised deep neural network. Given a ML model and data samples, BENN provides a bias estimation for every feature based on the models predictions. We evaluated BENN using three benchmark datasets and one proprietary churn prediction model used by a European Telco and compared it with an ensemble of 21 existing bias estimation methods. Evaluation results highlight the significant advantages of BENN over the ensemble, as it is generic (i.e., can be applied to any ML model) and there is no need for a domain expert, yet it provides bias estimations that are aligned with those of the ensemble.
Deep neural networks (DNNs) have successfully learned useful data representations in various tasks, however, assessing the reliability of these representations remains a challenge. Deep Ensemble is widely considered the state-of-the-art method for un certainty estimation, but it is very expensive to train and test. MC-Dropout is another alternative method, which is less expensive but lacks the diversity of predictions. To get more diverse predictions in less time, we introduce Randomized ReLU Activation (RRA) framework. Under the framework, we propose two strategies, MC-DropReLU and MC-RReLU, to estimate uncertainty. Instead of randomly dropping some neurons of the network as in MC-Dropout, the RRA framework adds randomness to the activation function module, making the outputs diverse. As far as we know, this is the first attempt to add randomness to the activation function module to generate predictive uncertainty. We analyze and compare the output diversity of MC-Dropout and our method from the variance perspective and obtain the relationship between the hyperparameters and output diversity in the two methods. Moreover, our method is simple to implement and does not need to modify the existing model. We experimentally validate the RRA framework on three widely used datasets, CIFAR10, CIFAR100, and TinyImageNet. The experiments demonstrate that our method has competitive performance but is more favorable in training time and memory requirements.
123 - Zhihui Shao , , Jianyi Yang 2020
To increase the trustworthiness of deep neural network (DNN) classifiers, an accurate prediction confidence that represents the true likelihood of correctness is crucial. Towards this end, many post-hoc calibration methods have been proposed to lever age a lightweight model to map the target DNNs output layer into a calibrated confidence. Nonetheless, on an out-of-distribution (OOD) dataset in practice, the target DNN can often mis-classify samples with a high confidence, creating significant challenges for the existing calibration methods to produce an accurate confidence. In this paper, we propose a new post-hoc confidence calibration method, called CCAC (Confidence Calibration with an Auxiliary Class), for DNN classifiers on OOD datasets. The key novelty of CCAC is an auxiliary class in the calibration model which separates mis-classified samples from correctly classified ones, thus effectively mitigating the target DNNs being confidently wrong. We also propose a simplified version of CCAC to reduce free parameters and facilitate transfer to a new unseen dataset. Our experiments on different DNN models, datasets and applications show that CCAC can consistently outperform the prior post-hoc calibration methods.
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two sca lable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural networks prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا