ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple approach for extending the ambiguity-free-range of dual-comb ranging

117   0   0.0 ( 0 )
 نشر من قبل Jakob Fellinger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we present a simple approach for expanding the ambiguity-free measurement length of dual-comb ranging by exploiting the intrinsic intensity modulation of a single-cavity dualcolor DC for simultaneous time-of-flight a nd D C distance measurements. This measurement approach enables the measurement of distances up to several hundred km with the precision and accuracy of a dualcomb interferometric setup while providing a high data acquisition rate (~2 kHz) and requiring only the repetition rate of one of the combs to be stabilized.

قيم البحث

اقرأ أيضاً

Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration of operation, a coherent averaging procedure is essential. To date, most coherent averaging schemes require additional electro-optical components, which increase system complexity and cost. Instead, we propose an all-computational solution that is compatible with real-time architectures and allows for coherent averaging of spectra generated by free-running systems. The efficacy of the computational correction algorithm is demonstrated using spectra acquired with a THz quantum cascade laser-based dual-comb spectrometer.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate exper imental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Doppler-limited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.
Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizi ng out-of-band spectral artifacts based on nonlinearity correction methods used in classical Fourier-transform spectrometers is presented. The exactitude of the nonlinearity correction is validated using a low power linear measurement. Spectroscopic lines of H$^{12}$CN are provided and the error caused by the saturation of the detector is corrected yielding residuals limited by the measurement noise.
ePix10K is a hybrid pixel detector developed at SLAC for demanding free-electron laser (FEL) applications, providing an ultrahigh dynamic range (245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high, medium and low) and two auto- ranging modes (high-to-low and medium-to-low). The first ePix10K cameras are built around modules consisting of a sensor flip-chip bonded to 4 ASICs, resulting in 352x384 pixels of 100 $mu$m x 100 $mu$m each. We present results from extensive testing of three ePix10K cameras with FEL beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e$^-$ equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We demonstrate the linearity of the response in various gain combinations: fixed high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging medium-to-low, while maintaining a low noise (well within the counting statistics), a very low cross-talk, perfect saturation response at fluxes up to 900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we present examples of high dynamic range x-ray imaging spanning more than 4 orders of magnitude dynamic range (from a single photon to 11000 photons/pixel/pulse at 8 keV). Achieving this high performance with only one auto-ranging switch leads to relatively simple calibration and reconstruction procedures. The low noise levels allow usage with long integration times at non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel detectors with high production yield and good availability, minimize development complexity through sharing the hardware, software and DAQ development with all oth
We describe the use of digital phase noise test sets at frequencies well beyond the sampling rate of their analog-to-digital converters. The technique proposed involves the transfer of phase fluctuations from an arbitrary high carrier frequency to wi thin the operating frequency range of the digital instrument. The validity of the proposed technique has been proven via comparison with conventional methods. Digital noise measurements eliminate the need for calibration and improve consistency of experimental results. Mechanisms limiting the resolution of spectral measurements are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا