ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs

72   0   0.0 ( 0 )
 نشر من قبل Gabriel Blaj
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ePix10K is a hybrid pixel detector developed at SLAC for demanding free-electron laser (FEL) applications, providing an ultrahigh dynamic range (245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high, medium and low) and two auto-ranging modes (high-to-low and medium-to-low). The first ePix10K cameras are built around modules consisting of a sensor flip-chip bonded to 4 ASICs, resulting in 352x384 pixels of 100 $mu$m x 100 $mu$m each. We present results from extensive testing of three ePix10K cameras with FEL beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e$^-$ equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We demonstrate the linearity of the response in various gain combinations: fixed high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging medium-to-low, while maintaining a low noise (well within the counting statistics), a very low cross-talk, perfect saturation response at fluxes up to 900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we present examples of high dynamic range x-ray imaging spanning more than 4 orders of magnitude dynamic range (from a single photon to 11000 photons/pixel/pulse at 8 keV). Achieving this high performance with only one auto-ranging switch leads to relatively simple calibration and reconstruction procedures. The low noise levels allow usage with long integration times at non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel detectors with high production yield and good availability, minimize development complexity through sharing the hardware, software and DAQ development with all oth



قيم البحث

اقرأ أيضاً

We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel de tector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition (DAQ) system, and preliminary results from experiments with 80 to 200 keV electron beams.
58 - M. Suyama , A. Fukasawa , J. Haba 2004
A hybrid photo-detector (HPD) consisting of a photocathode and a multi-pixel avalanche diode (MP-AD) was developed a few years ago. Our previous studies showed that its inherent potential for high resolution photon counting could be further enhanced by reducing fluctuations in charge loss in the dead layer at the entrance of the MP-AD. In this paper, we report on the improvement with the newly developed HPD whose encapsulated MP-AD has a thinner dead layer than before. It is demonstrated that the new HPD has much better energy resolution, which enables clearer counting up to nine photoelectrons. Further enhancement of the photocathode sensitivity of the HPD is also discussed.
The Adaptive Gain Integrating Pixel Detector (AGIPD) is an x-ray imager, custom designed for the European x-ray Free-Electron Laser (XFEL). It is a fast, low noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalen t noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 10$^4$ photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.
The Belle II experiment at the Super B factory SuperKEKB, an asymmetric $e^+e^-$ collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the $Upsilon(4S)$ resonance of $m_{Upsilon(4S)} = 10.58,rm GeV$. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only $75,rmmu m$. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
The CMS experiment will include a pixel detector for pattern recognition and vertexing. It will consist of three barrel layers and two endcaps on each side, providing three space-points up to a pseudoraditity of 2.1. Taking into account the expected limitations of its performance in the LHC environment an 8-9 layer pixel detector for an upgraded LHC is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا