ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser

188   0   0.0 ( 0 )
 نشر من قبل Lukasz Sterczewski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate experimental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Doppler-limited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.

قيم البحث

اقرأ أيضاً

Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration of operation, a coherent averaging procedure is essential. To date, most coherent averaging schemes require additional electro-optical components, which increase system complexity and cost. Instead, we propose an all-computational solution that is compatible with real-time architectures and allows for coherent averaging of spectra generated by free-running systems. The efficacy of the computational correction algorithm is demonstrated using spectra acquired with a THz quantum cascade laser-based dual-comb spectrometer.
Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a rea l-time, high-resolution analytical spectroscopy tool for a range of applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be sufficiently stable against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve RF beat notes between comb teeth and picometer-wide optical spectral features is demonstrated using a simple data acquisition and processing system in an all-fiber setup. Possibility to use energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable the realization of low-cost dual-comb spectroscopy systems affordable to more applications.
We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to p icosecond ultrasonic measurements. The ultrasonic signatures in a semiconductor multi-quantum-well structure originating from the quantum wells and superlattice regions are revealed and discussed. We further demonstrate ultrasonic measurements on a thin-film metalized sample and compare these measurements to ones obtained with a pair of locked femtosecond lasers. Our data show that a free-running dual-comb laser is well-suited for picosecond ultrasonic measurements and thus it offers a significant reduction in complexity and cost for this widely adopted non-destructive testing technique.
We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {mu}m, which is the current wavelength limit for commercial cw EC-QCLs.
Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we pres ent a simple approach for expanding the ambiguity-free measurement length of dual-comb ranging by exploiting the intrinsic intensity modulation of a single-cavity dualcolor DC for simultaneous time-of-flight a nd D C distance measurements. This measurement approach enables the measurement of distances up to several hundred km with the precision and accuracy of a dualcomb interferometric setup while providing a high data acquisition rate (~2 kHz) and requiring only the repetition rate of one of the combs to be stabilized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا