ﻻ يوجد ملخص باللغة العربية
We apply moment methods to obtaining an approximate analytical solution to Knudsen layers. Based on the hyperbolic regularized moment system for the Boltzmann equation with the Shakhov collision model, we derive a linearized hyperbolic moment system to model the scenario with the Knudsen layer vicinity to a solid wall with Maxwell boundary condition. We find that the reduced system is in an even-odd parity form that the reduced system proves to be well-posed under all accommodation coefficients. We show that the system may capture the temperature jump coefficient and the thermal Knudsen layer well with only a few moments. With the increasing number of moments used, qualitative convergence of the approximate solution is observed.
Techniques are proposed for solving integral equations of the first kind with an input known not precisely. The requirement that the solution sought for includes a given number of maxima and minima is imposed. It is shown that when the deviation of t
This work is divide in two cases. In the first case, we consider a spin manifold $M$ as the set of fixed points of an $S^{1}$-action on a spin manifold $X$, and in the second case we consider the spin manifold $M$ as the set of fixed points of an $S^
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differen
An eigenvalue problem relevant for non-linear sigma model with singular metric is considered. We prove the existence of a non-degenerate pure point spectrum for all finite values of the size R of the system. In the infrared (IR) regime (large R) the
Motivated by practical applications in heat conduction and contaminant transport, we consider heat and mass diffusion across a perturbed interface separating two finite regions of distinct diffusivity. Under the assumption of continuity of the soluti