ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analytical Approach to the equivariant index and Witten genus on spin manifolds

268   0   0.0 ( 0 )
 نشر من قبل Juan Villarreal Ph.D.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is divide in two cases. In the first case, we consider a spin manifold $M$ as the set of fixed points of an $S^{1}$-action on a spin manifold $X$, and in the second case we consider the spin manifold $M$ as the set of fixed points of an $S^{1}$-action on the loop space of $M$. For each case, we build on $M$ a vector bundle, a connection and a set of bundle endomorphisms. These objects are used to build global operators on $M$ which define an analytical index in each case. In the first case, the analytical index is equal to the topological equivariant Atiyah Singer index, and in the second case the analytical index is equal to a topological expression where the Witten genus appears.



قيم البحث

اقرأ أيضاً

Chirally symmetric discrete-time quantum walks possess supersymmetry, and their Witten indices can be naturally defined. The Witten index gives a lower bound for the number of topologically protected bound states. The purpose of this paper is to give a complete classification of the Witten index associated with a one-dimensional split-step quantum walk. It turns out that the Witten index of this model exhibits striking similarity to the one associated with a Dirac particle in supersymmetric quantum mechanics.
93 - Ruo Li , Yichen Yang 2021
We apply moment methods to obtaining an approximate analytical solution to Knudsen layers. Based on the hyperbolic regularized moment system for the Boltzmann equation with the Shakhov collision model, we derive a linearized hyperbolic moment system to model the scenario with the Knudsen layer vicinity to a solid wall with Maxwell boundary condition. We find that the reduced system is in an even-odd parity form that the reduced system proves to be well-posed under all accommodation coefficients. We show that the system may capture the temperature jump coefficient and the thermal Knudsen layer well with only a few moments. With the increasing number of moments used, qualitative convergence of the approximate solution is observed.
An eigenvalue problem relevant for non-linear sigma model with singular metric is considered. We prove the existence of a non-degenerate pure point spectrum for all finite values of the size R of the system. In the infrared (IR) regime (large R) the eigenvalues admit a power series expansion around IR critical point Rtoinfty. We compute high order coefficients and prove that the series converges for all finite values of R. In the ultraviolet (UV) limit the spectrum condenses into a continuum spectrum with a set of residual bound states. The spectrum agrees nicely with the central charge computed by the Thermodynamic Bethe Ansatz method
158 - M.C. Nucci , P.G.L. Leach 2008
In the recent literature there has been a resurgence of interest in the fourth-order field-theoretic model of Pais-Uhlenbeck cite {Pais-Uhlenbeck 50 a}, which has not had a good reception over the last half century due to the existence of {em ghosts} in the properties of the quantum mechanical solution. Bender and Mannheim cite{Bender 08 a} were successful in persuading the corresponding quantum operator to `give up the ghost. Their success had the advantage of making the model of Pais-Uhlenbeck acceptable to the physical community and in the process added further credit to the cause of advancement of the use of ${cal PT} $ symmetry. We present a case for the acceptance of the Pais-Uhlenbeck model in the context of Diracs theory by providing an Hamiltonian which is not quantum mechanically haunted. The essential point is the manner in which a fourth-order equation is rendered into a system of second-order equations. We show by means of the method of reduction of order cite {Nucci} that it is possible to construct an Hamiltonian which gives rise to a satisfactory quantal description without having to abandon Dirac.
A recipe is presented for constructing band-limited superoscillating functions that exhibit arbitrarily high frequencies over arbitrarily long intervals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا