ﻻ يوجد ملخص باللغة العربية
ArQTiC is an open-source, full-stack software package built for the simulations of materials on quantum computers. It currently can simulate materials that can be modeled by any Hamiltonian derived from a generic, one-dimensional, time-dependent Heisenberg Hamiltonain. ArQTiC includes modules for generating quantum programs for real- and imaginary-time evolution, quantum circuit optimization, connection to various quantum backends via the cloud, and post-processing of quantum results. By enabling users to seamlessly perform and analyze materials simulations on quantum computers by simply providing a minimal input text file, ArQTiC opens this field to a broader community of scientists from a wider range of scientific domains.
We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quan
Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the pr
The Chronus Quantum (ChronusQ) software package is an open source (under the GNU General Public License v2) software infrastructure which targets the solution of challenging problems that arise in ab initio electronic structure theory. Special emphas
ESPResSo 4.0 is an extensible simulation package for research on soft matter. This versatile molecular dynamics program was originally developed for coarse-grained simulations of charged systems Limbach et al., Comput. Phys. Commun. 174, 704 (2006).
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fa