ﻻ يوجد ملخص باللغة العربية
The Chronus Quantum (ChronusQ) software package is an open source (under the GNU General Public License v2) software infrastructure which targets the solution of challenging problems that arise in ab initio electronic structure theory. Special emphasis is placed on the consistent treatment of time dependence and spin in the electronic wave function, as well as the inclusion of relativistic effects in said treatments. In addition, ChronusQ provides support for the inclusion of uniform finite magnetic fields as external perturbations through the use of gauge-including atomic orbitals (GIAO). ChronusQ is a parallel electronic structure code written in modern C++ which utilizes both message passing (MPI) and shared memory (OpenMP) parallelism. In addition to the examination of the current state of code base itself, a discussion regarding ongoing developments and developer contributions will also be provided.
ArQTiC is an open-source, full-stack software package built for the simulations of materials on quantum computers. It currently can simulate materials that can be modeled by any Hamiltonian derived from a generic, one-dimensional, time-dependent Heis
PYSCF is a Python-based general-purpose electronic structure platform that both supports first-principles simulations of molecules and solids, as well as accelerates the development of new methodology and complex computational workflows. The present
ESPResSo 4.0 is an extensible simulation package for research on soft matter. This versatile molecular dynamics program was originally developed for coarse-grained simulations of charged systems Limbach et al., Comput. Phys. Commun. 174, 704 (2006).
We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quan
We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQE) in molecular simulations: the adaptive Quantum Thermal Bath (adQTB). In this method, zero point energy is introduced through a g