ﻻ يوجد ملخص باللغة العربية
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, emph{Quantum Inf. Comput.}, textbf{6}:81, 2006]. For a given approximation error $epsilon$, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is $O(log epsilon)$ or $O(log log epsilon)$; with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hy
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usual
Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optim
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-b