ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybridization-gap Formation and Superconductivity in the Pressure-induced Semimetallic Phase of the Excitonic Insulator Ta$_2$NiSe$_5$

88   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Matsubayashi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The excitonic insulator Ta$_2$NiSe$_5$ experiences a first-order structural transition under pressure from rippled to flat layer-structure at Ps = 3 GPa, which drives the system from an almost zero-gap semiconductor to a semimetal. The pressure-induced semimetal, with lowering temperature, experiences a transition to another semimetal with a partial-gap of 0.1-0.2 eV, accompanied with a monoclinic distortion analogous to that occurs at the excitonic transition below Ps. We argue that the partial-gap originates primarily from a symmetry-allowed hybridization of Ta-conduction and Ni-valence bands due to the lattice distortion, indicative of the importance of electron-lattice coupling. The transition is suppressed with increasing pressure to Pc = 8 GPa. Superconductivity with a maximum Tsc = 1.2 K emerges around Pc, likely mediated by strongly electron-coupled soft phonons. The electron-lattice coupling is as important ingredient as the excitonic instability in Ta2NiSe5.

قيم البحث

اقرأ أيضاً

82 - Q. He , X. Que , L. Zhou 2020
Tuning many-body electronic phases by an external handle is of both fundamental and practical importance in condensed matter science. The tunability mirrors the underlying interactions, and gigantic electric, optical and magnetic responses to minute external stimuli can be anticipated in the critical region of phase change. The excitonic insulator is one of the exotic phases of interacting electrons, produced by the Coulomb attraction between a small and equal number of electrons and holes, leading to the spontaneous formation of exciton pairs in narrow-gap semiconductors/semimetals. The layered chalcogenide Ta$_2$NiSe$_5$ has been recently discussed as such an excitonic insulator with an excitation gap of ~250 meV below $T_c$ = 328 K. Here, we demonstrate a drastic collapse of the excitation gap in Ta$_2$NiSe$_5$ and the realization of a zero-gap state by moving the tip of a cryogenic scanning tunneling microscope towards the sample surface by a few angstroms. The collapse strongly suggests the many-body nature of the gap in the insulating state of Ta$_2$NiSe$_5$, consistent with the formation of an excitonic state. We argue that the collapse of the gap is driven predominantly by the electrostatic charge accumulation at the surface induced by the proximity of the tip and the resultant carrier doping of the excitonic insulator. Our results establish a novel phase-change function based on excitonic insulators.
We investigate the non-equilibrium electronic structure and characteristic time scales in a candidate excitonic insulator, Ta$_2$NiSe$_5$, using time- and angle-resolved photoemission spectroscopy with a temporal resolution of 50 fs. Following a stro ng photoexcitation, the band gap closes transiently within 100 fs, i.e., on a time scale faster than the typical lattice vibrational period. Furthermore, we find that the characteristic time associated with the rise of the photoemission intensity above the Fermi energy decreases with increasing excitation strength, while the relaxation time of the electron population towards equilibrium shows an opposite behaviour. We argue that these experimental observations can be consistently explained by an excitonic origin of the band gap in the material. The excitonic picture is supported by microscopic calculations based on the non-equilibrium Greens function formalism for an interacting two-band system. We interpret the speedup of the rise time with fluence in terms of an enhanced scattering probability between photo-excited electrons and excitons, leading to an initially faster decay of the order parameter. We show that the inclusion of electron-phonon coupling at a semi-classical level changes only the quantitative aspects of the proposed dynamics, while the qualitative features remain the same. The experimental observations and microscopic calculations allow us to develop a simple and intuitive phenomenological model that captures the main dynamics after photoexcitation in Ta$_2$NiSe$_5$.
89 - Takemi Yamada , Kaoru Domon , 2018
We investigate the excitonic fluctuation and its mediated superconductivity in the quasi one-dimensional three-chain Hubbard model for Ta$_2$NiSe$_5$ known as a candidate material for the excitonic insulator. In the semiconducting case and the semime tallic case with a small band-overlapping where one conduction ($c$) band and one valence ($f$) band cross the Fermi level, the excitonic fluctuation with $bm{q}=bm{0}$ is enhanced due to the $c$-$f$ Coulomb interaction and diverges towards the uniform excitonic order corresponding to the excitonic insulator. On the other hands, in the semimetallic case with a large band-overlapping where two $c$ bands and one $f$ band cross the Fermi level, the non-uniform excitonic fluctuation with $bm{q} eq bm{0}$ corresponding to the nesting vector between the $c$ and $f$ Fermi-surfaces (FSs) becomes dominant and results in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic order characterized by the condensation of excitons with finite center-of-mass momentum $bm{q}$. Near the instability, the largely enhanced excitonic fluctuations mediate the $c$-$f$ interband Cooper pairs with finite center-of-mass momentum resulting in the FFLO superconductivity, which is expected to be realized in the semimetallic Ta$_2$NiSe$_5$ under high pressure.
Transition metal chalcogenide Ta$_2$NiSe$_5$, a promising material for the excitonic insulator, is investigated on the basis of the quasi-one-dimensional three-chain Hubbard model with two conduction ($c$) bands and one valence ($f$) band. In the sem imetallic case where only one of two $c$ bands and the $f$ band cross the Fermi level, the transition from the $c$-$f$ compensated semimetal to the uniform excitonic insulator takes place at low temperature as the same as in the semiconducting case. On the other hand, when another $c$ band also crosses the Fermi level, the system shows three types of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic orders characterized by the condensation of excitons with finite center-of-mass momentum $q$ corresponding to the three types of nesting vectors between the imbalanced two $c$ and one $f$ Fermi surfaces. The obtained FFLO states are metallic in contrast to the excitonic insulator and are expected to be observed in semimetallic Ta$_2$NiSe$_5$ under high pressure.
We analyze the measured optical conductivity spectra using the density-functional-theory-based electronic structure calculation and density-matrix renormalization group calculation of an effective model. We show that, in contrast to a conventional de scription, the Bose-Einstein condensation of preformed excitons occurs in Ta$_2$NiSe$_5$, despite the fact that a noninteracting band structure is a band-overlap semimetal rather than a small band-gap semiconductor. The system above the transition temperature is therefore not a semimetal, but rather a state of preformed excitons with a finite band gap. A novel insulator state caused by the strong electron-hole attraction is thus established in a real material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا