ﻻ يوجد ملخص باللغة العربية
Transition metal chalcogenide Ta$_2$NiSe$_5$, a promising material for the excitonic insulator, is investigated on the basis of the quasi-one-dimensional three-chain Hubbard model with two conduction ($c$) bands and one valence ($f$) band. In the semimetallic case where only one of two $c$ bands and the $f$ band cross the Fermi level, the transition from the $c$-$f$ compensated semimetal to the uniform excitonic insulator takes place at low temperature as the same as in the semiconducting case. On the other hand, when another $c$ band also crosses the Fermi level, the system shows three types of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic orders characterized by the condensation of excitons with finite center-of-mass momentum $q$ corresponding to the three types of nesting vectors between the imbalanced two $c$ and one $f$ Fermi surfaces. The obtained FFLO states are metallic in contrast to the excitonic insulator and are expected to be observed in semimetallic Ta$_2$NiSe$_5$ under high pressure.
The three-chain Hubbard model for Ta$_2$NiSe$_5$ known as a candidate material for the excitonic insulator is investigated over the wide range of energy gap $D$ between the two-fold degenerate conduction bands and the nondegenerate valence band inclu
The excitonic insulator Ta$_2$NiSe$_5$ experiences a first-order structural transition under pressure from rippled to flat layer-structure at Ps = 3 GPa, which drives the system from an almost zero-gap semiconductor to a semimetal. The pressure-induc
We investigate the excitonic fluctuation and its mediated superconductivity in the quasi one-dimensional three-chain Hubbard model for Ta$_2$NiSe$_5$ known as a candidate material for the excitonic insulator. In the semiconducting case and the semime
The microscopic quantum interference associated with excitonic condensation in Ta$_2$NiSe$_5$ is studied in the BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just below the transition temperature
In the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we derive the equations of motion for the Ising order parame